* Wastewater management in small communities in Poland

Dr Jerzy Mikosz

Cracow University of Technology Institute of Water Supply and Environmental Protection Ul. Warszawska 24, 31-155 Krakow, POLAND

*Quantity of water resources

(Source: Eurostat)

*Surface water quality

(Source: GIOŚ/PMŚ 2008)

* Surface water quality - eutrophication

(Source: GIOŚ/PMŚ 2008)

* Urbanization

Percentage of population using:

Population structure

Urban Rural

*Sanitation in rural areas

Wastewater disposal in rural areas (as a share of water volume)

*Sanitation in rural areas

Population using WWTPs in years 1995-2009

⁽Source: GUS, Environment 2010)

*Legal framework

- WFD (2000/60/EC) and the Directive concerning urban wastewater treatment (91/271/EEC) implemented into Polish law as:
 - * Water Law (2001)
 - * Environmental Protection Law (2001)
 - * Municipal water supply and sewage discharge law (2001)
 - * Order of Ministry of Environment on quality of effluents discharged to the environment (last revised 2009)
 - * other
- **Communes** (2479) responsibility for water supply and sewage management in their areas
- Minister of Environment coordination of water supply and sewage managament actions and plans
- National Board of Water Management with 7 regional branches

* Implementation of 91/271/EEC

* Poland's EU accession treaty...

- applied to 674 agglomerations
- equiv. of 69% of total PE load
 - applied to **1069** agglomerations
- 2010 equiv. of 86% of total PE load
 - applied to **1165** agglomerations
- 2013 equiv. of 91% of total PE load
 - applied to ALL agglomerations >2000 PE
- 2015 equiv. of 100% of total PE load

2015

 wastewater from ALL agglomerations <2000 PE with sewerage systems will be appropriately treated

*Implementation of 91/271/EEC

*National Urban Wastewater Treatment Programme (2003)

- * Modernization, extension and construction of new WWTPs
 - * Priority list: 1313 WWTPs >2000 PE, 97% of total programme PE load
 - * Non-priority: 322 WWTPs, 3% of total programme PE load
- Modernization or construction of 33 000 km of sewage lines
- * Expected results: ~100% of urban and ~60% of rural population served by sewerage systems and WWTPs in 2015

* Implementation of 91/271/EEC (article 7)

- * Programme of construction of WWTPs in agglomerations of PE<2000 with sewerage systems
 - * started in 2007
 - * only 2% of budget and 1% of PE load
 - * applies to 379 agglomerations of 450 000 PE, including:
 - 221 wwtps to be extended or modernized
 - * 29 new wwtps to be constructed
 - * planned construction of 1241 km of sewage network to ensure that 85% of population served by sewage networks

* Financing

(Source: GUS, Environment 2010)

Ecological funds and foreign funds:

- National Fund for Environmental Protection and Water Management
- Programme of Development of Rural Areas
- EU Structural funds / Operational Programme "Infrastructure and Environment"
- Norwegian Financial Mechanism and EEA Grants for Poland

*Financing of small WWTPs

* Wastewater treatment technologies

INDUSTRIAL AND MUNICIPAL WASTE WATER REQUIRING TREATMENT DISCHARGED INTO WATERS OR INTO THE GROUND IN THE YEARS 1970–2009 (Source: GUS, Environment 2010)

* Small WWTPs (< 2000 PE)

Number of WWTPs by capacity and type of treatment

(Source: GUS, Environment 2010)

* Small WWTPs (< 2000 PE)

Requirements for discharges from urban WWTPs in Poland

#	Parameter	Unit	Max concentration or min % of reduction for PE:				
			< 2 000	2 000 - 9 999	10 000 - 14 999	15 000 - 99 999	> 100 000
1.	BOD ₅	mg O ₂ /I	40	25	25	15	15
		min. %	-	70 - 90	70 - 90	90	90
2.	COD	mg O ₂ /I	150	125	125	125	125
		min. %	-	75	75	75	75
3.	TSS	mg/l	50	35	35	35	35
		min. %	-	90	90	90	90
4.	Total N	mg N/I	30 *)	15 *)	15 ^{*)}	15	10
		min. %	-	-	<i>35^{*)}</i>	80	85
5.	Total P	mg P/I	5 *)	2*)	2 *)	2	1
		min. %	_	_	40 ^{*)}	85	90

*) when discharged to lakes or coastal waters

* Small WWTPs (< 2000 PE) Categories

* Individual WWTP - only if municipal systems not economically feasible and no sewage system

	Household WWTPs	Small WWTPs
Capacity	≤ 5 m³/d	~ 5-150 m³/d
Effluent discharged to	water, soil	water
Water permit	no	yes
Construction permit	no	yes
Notification about installation	yes	no
Effluent quality control	no	yes

*Household WWTP

- No reliable data on number of WWTPs and technologies
- Many not reported
- Widely used in rural and suburban areas

*Household WWTP: technologies

- Very popular approx. 50% of the the small WWTPs in Poland
- Needed good soil conditions and space for drainage

(Source: Kleiza Wastewater Solutions)

Small compact WWTP (0,6-4 m³/d) with nitrification/denitrification

(Source: PROX Sp. z o.o)

*Small WWTP: Biological methods

*Small WWTP

* Example small WWTP (15-60 m³/d) with activated sludge (nitrification/denitrification)

* Conclusions

- Focus on massive reduction of pollution loads. Small communities have worse access to sanitation services.
- 2. Leaking septic tanks still a problem. The use of small WWTPs may be a solution.
- Increasing number of new small WWTPs with advanced treatment technologies. Large potential for growth in this market.

*Thank you