3^{ra} edición DISEÑO SISMORRESISTENTE DE CONSTRUCCIONES DE ACERO

FRANCISCO JAVIER CRISAFULLI Ingeniero Civil, Ph.D. Profesor de Ingeniería Estructural, Universidad Nacional de Cuyo, Mendoza, Argentina

ASOCIACIÓN LATINOAMERICANA DEL ACERO

© 2013. Asociación Latinoamericana del Acero - Alacero Secretaría General de Alacero Benjamín N° 2.944 - 5^{to} piso - Las Condes - Santiago de Chile Teléfono: (56-2)2233-0545 • Fax: (56-2) 2233-0768 alacero@alacero.org www.alacero.org ISBN: 978-956-8181-15-4

Prefacio

Los sismos son desastres naturales que frecuentemente golpean a distintas regiones de Latinoamérica, produciendo pérdidas de vidas humanas, daño en la infraestructura civil y pérdidas económicas. Es por ello que la reducción del riesgo sísmico, y en particular de la vulnerabilidad de las construcciones, representa una tarea de gran importancia social. Si bien esta tarea debe desarrollarse en un contexto interdisciplinario, es obvio que el rol del ingeniero estructural es preponderante, dado que tiene a su cargo el diseño, cálculo y supervisión del sistema estructural de las construcciones.

Es por ello que este libro está dirigido a los profesionales de la ingeniería estructural, estudiantes de posgrado y estudiantes avanzados de ingeniería civil, con el objeto de presentar los aspectos fundamentales del diseño sismorresistente de estructuras de acero. Esta tarea se realiza con el convencimiento de que la capacitación de los ingenieros estructurales representa una acción efectiva para reducir la vulnerabilidad de las construcciones.

Este texto fue editado originalmente en el año 2010 y actualizado en el 2012, principalmente para incorporar las modificaciones introducidas en el reglamento ANSI/AISC 341-10, *Seismic Provisions for Structural Steel Buildings*. Adicionalmente, se agregaron dos capítulos nuevos sobre sistemas estructurales de muy buen desempeño, como son los pórticos con riostras de pandeo restringido y los muros de corte con placas de acero. Ahora se presenta la tercera edición, en la cual se incluye los aspectos principales del diseño de estructuras con miembros compuestos de acero y hormigón. Este tema se considera de gran actualidad, debido a que las construcciones compuestas representan una alternativa con muy buen desempeño estructural y ventajas constructivas y económicas, lo cual surge de la combinación sinérgica del acero estructural y el hormigón.

El autor agradece a la Asociación Latinoamericana del Acero, ALACERO, quien en su afán de promover y difundir el uso del acero en América Latina, propuso y apoyó la realización de la presente publicación, en todas sus ediciones. En particular, se destaca el constante apoyo del Ing. Guillermo Moreno y del Ing. Alberto Pose para el desarrollo del trabajo.

Se reconoce especialmente la tarea realizada por el Ing. Eduardo Daniel Quiroga, quien aportó comentarios y sugerencias vinculados con aspectos técnicos de la publicación, y la revisión del Sr. Alejandro Santoro quién además colaboró en la preparación de algunos gráficos. Se agradecen también la contribución de la Profesora Silvina Negri para mejorar la redacción del texto.

Francisco J. Crisafulli

Ingeniero Civil, Ph.D. Profesor de Ingeniería Estructural, Universidad Nacional de Cuyo, Mendoza, Argentina

Marzo de 2013

Índice

Prefacio	
Índice	4
Notación	7
Introduce	ión1
1.1	OBJETIVO, ALCANCES Y
ORGANI	ZACIÓN DEL TEXTO1
1.2	MÉTODOS DE DISEÑO: ASD Y
LRFD	1
1.3	RIESGO SÍSMICO E INGENIERÍA
SISMOR	RESISTENTE4
1.4	ESTRUCTURAS DÚCTILES DE
ACERO	5
1.4.1	El acero como material estructural5
1.4.2	Aspectos generales del comportamiento
estructura]
1.4.3	Clasificación de secciones 8
1.4.4	Efectos de segundo orden
145	Comportamiento sísmico de las
estructura	os de acero 10
1 5	ESTRUCTURAS CON SECCIONES
COMPLI	FSTAS 13
151	Aspectos generales 13
1.5.1	Conectores de corte 14
1.5.2	Tipos de miembros compuestos
1.5.5	Fyaluación de la resistencia de
secciones	compuestas 18
secciones	compuestus
Aspectos	generales del diseño sismorresistente .20
2.1	EL SISMO COMO ACCIÓN DE
DISEÑO	20
2.1.1	Espectros de respuesta
2.1.2	Espectros de diseño
213	Acción vertical del sismo 22
2.2	DISEÑO POR CAPACIDAD
2.3	FILOSOFÍA DEL DISEÑO
SISMOR	RESISTENTE 23
231	Criterio general 23
232	Factor de modificación de respuesta R
2.3.2	23
24	DESPI AZAMIENTOS I ATERALES
2.4 Y DISTO	RSIÓN DE PISO 25
25	ESTADOS DE CARGA Y ANÁLISIS
2.5	27
251	Factor de redundancia 27
2.5.2	Combinaciones de carga con acción de
sismo	27
253	Métodos de análisis 28
2.5.5	TÉCNICAS AVANZADAS DE
DISEÑO	SISMORRESISTENTE 20
261	Sistemas de protección sísmica 20
2.0.1	Disinadores de energía 21
202	

2.7	SISTEMAS ESTRUCTURALES	
PARA C	ONSTRUCCIONES DE ACERO	32
2.7.1	Pórticos no arriostrados	33
2.7.2	Pórticos arriostrados concéntricamente	,
2.7.2	34	
2.7.3	Pórticos arriostrados excéntricamente 3	36
2.7.4	Sistemas de columnas en voladizo	37
2.7.5	Pórticos con riostras de pandeo	
restringic	lo	38
2.7.6	Muros de corte con placas de acero ?	39
2.7.7	Estructuras con miembros compuestos	
	40	
2.8	SISTEMAS SISMORRESISTENTES	43
2.8.1	Conexiones	43
2.0.1	Zonas protegidas	13
2.0.2	Tipos de soldaduras Soldaduras de	15
demanda	crítica	14
284	"Área-k"	17 1/1
2.0.4	Arriestramiontes para estabilidad de	+++
2.0.J	Arriostrainientos para estabilidad de	
vigas	45 Consector y analoias da	
2.0.0	A7	
	47	
2.9 Conste	NERADILITACIÓN SISWICA DE	10
201	A spectra concerlas	+0 10
2.9.1	Aspectos generales	+0 40
2.9.2	Estrategias de renabilitación	49 70
2.9.3	Rehabilitación de estructuras de acero:	50
Pórticos	no arriostrados	51
Pórticos 1	no arriostrados	51 51
Pórticos 1 3.1 3.1.1	no arriostrados INTRODUCCIÓN	51 51 51
Pórticos 1 3.1 3.1.1 3.1.2	no arriostrados INTRODUCCIÓN Comportamiento estructural	51 51 51
Pórticos 1 3.1 3.1.1 3.1.2 precalific	no arriostrados INTRODUCCIÓN Comportamiento estructural	51 51 51 s
Pórticos r 3.1 3.1.1 3.1.2 precalific	no arriostrados	51 51 51 s 52
Pórticos r 3.1 3.1.1 3.1.2 precalific 3.2 ESPECIA	no arriostrados	51 51 51 52 52
Pórticos r 3.1 3.1.1 3.1.2 precalific 3.2 ESPECIA	no arriostrados	51 51 51 52 52
Pórticos 1 3.1 3.1.1 3.1.2 precalific 3.2 ESPECIA 3.2.1 3.2.2	no arriostrados	51 51 51 52 52 53
Pórticos 1 3.1 3.1.1 3.1.2 precalific 3.2 ESPECIA 3.2.1 3.2.2 3.2.2	no arriostrados	51 51 51 52 53 53 53
Pórticos n 3.1 3.1.1 3.1.2 precalific 3.2 ESPECIA 3.2.1 3.2.2 3.2.3 3.2.4	no arriostrados	51 51 51 52 53 53 53 53
Pórticos 1 3.1 3.1.1 3.1.2 precalific 3.2 ESPECIA 3.2.1 3.2.2 3.2.3 3.2.4 2.2.5	no arriostrados	51 51 52 53 53 53 53 53
Pórticos 1 3.1 3.1.1 3.1.2 precalific 3.2 ESPECIA 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Palación	no arriostrados	51 51 51 52 53 53 53 53 53 53
Pórticos 1 3.1 3.1.1 3.1.2 precalific 3.2 ESPECIA 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Relación	no arriostrados	51 51 51 52 53 53 53 53 53 53 54 57
Pórticos 1 3.1 3.1.1 3.1.2 precalific 3.2 ESPECIA 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Relación 3.2.6	no arriostrados	51 51 52 53 53 53 53 53 53 53 53 54 57 de
Pórticos 1 3.1 3.1.1 3.1.2 precalific 3.2 ESPECIA 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Relación 3.2.6 columnas	no arriostrados	51 51 52 53 53 53 53 53 53 54 57 de 58
Pórticos 1 3.1 3.1.1 3.1.2 precalific 3.2 ESPECIA 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Relación 3.2.6 columnas 3.2.7 2.2.9	no arriostrados	51 51 52 53 53 53 53 53 53 53 53 53 53 53 53 53
Pórticos 1 3.1 3.1.1 3.1.2 precalific 3.2 ESPECIA 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Relación 3.2.6 columnas 3.2.7 3.2.8	no arriostrados	51 51 52 53 53 53 53 53 53 53 53 53 53 53 53 53
Pórticos n 3.1 3.1.1 3.1.2 precalific 3.2 ESPECIA 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Relación 3.2.6 columnas 3.2.7 3.2.8 3.3 PERENA	no arriostrados	51 51 52 53 53 53 53 53 53 53 53 53 53 53 53 53
Pórticos n 3.1 3.1.1 3.1.2 precalific 3.2 ESPECIA 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Relación 3.2.6 columnas 3.2.7 3.2.8 3.3 INTERM	no arriostrados	51 51 52 53 53 53 53 53 53 53 53 53 53 53 53 53
Pórticos 1 3.1 3.1.1 3.1.2 precalific 3.2 ESPECIA 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Relación 3.2.6 columnas 3.2.7 3.2.8 3.3 INTERM 3.3.1 2.2.2	no arriostrados	51 51 51 52 53 53 53 53 53 53 53 53 53 53 53 53 53
Pórticos 1 3.1 3.1.1 3.1.2 precalific 3.2 ESPECIA 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Relación 3.2.6 columnas 3.2.7 3.2.8 3.3 INTERM 3.3.1 3.3.2 2.2.2	no arriostrados	51 51 51 52 53 53 53 53 53 53 53 53 53 53 53 53 53
Pórticos 1 3.1 3.1.1 3.1.2 precalific 3.2 ESPECIA 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Relación 3.2.6 columnas 3.2.7 3.2.8 3.3 INTERM 3.3.1 3.3.2 3.3.3	no arriostrados	51 51 51 52 53 53 53 53 53 53 53 53 53 53 53 53 53
Pórticos 1 3.1 3.1.1 3.1.2 precalific 3.2 ESPECIA 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Relación 3.2.6 columnas 3.2.7 3.2.8 3.3 INTERM 3.3.1 3.3.2 3.3.3 3.3.4 3.3.4	no arriostrados	51 51 51 52 53 53 53 53 53 53 53 53 53 53 53 53 53
Pórticos n 3.1 3.1.1 3.1.2 precalific 3.2 ESPECIA 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Relación 3.2.6 columnas 3.2.7 3.2.8 3.3 INTERM 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	no arriostrados	51 51 51 52 53 53 53 53 53 53 53 53 53 53 53 53 53
Pórticos 1 3.1 3.1.1 3.1.2 precalific 3.2 ESPECIA 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Relación 3.2.6 columnas 3.2.7 3.2.8 3.3 INTERM 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 columnas	no arriostrados	51 51 51 52 53 53 53 53 53 53 53 53 53 53 53 53 53
Pórticos 1 3.1 3.1.1 3.1.2 precalific 3.2 ESPECIA 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Relación 3.2.6 columnas 3.2.7 3.2.8 3.3 INTERM 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 columnas 3.3.6	no arriostrados	51 51 51 52 53 53 53 53 53 53 53 53 53 53 53 53 53

ORDINA	RIOS	59
3.4.1	Aspectos generales	59
3.4.2	Conexiones viga-columna	59
3.4.3	Placas de continuidad	60
3.5	COMPARACIÓN DE LOS	
REQUEF	RIMIENTOS DE DISEÑO	60
3.6	CONEXIONES VIGA-COLUMNA	61
3.6.1	Conexiones reforzadas	61
3.6.2	Conexiones con viga de sección	
reducida	64	
3.6.3	Otras conexiones	65
3.6.4	Conexiones precalificadas ANSI/AIS	С
358	66	-
Pórticos a	arriostrados concéntricamente	68
4 1	INTRODUCCIÓN	68
4.2	COMPORTAMIENTO	00
FSTRUC	TURAL DE LAS RIOSTRAS	68
121 121	Respuesta cíclica	68
42.1	Factores que afectan la respuesta	70
4.2.2	CONFIGURACIÓN GEOMÉTRICA	10
	DIOSTDAS	77
121	Critorios estructurales	12 72
4.5.1	Piestres on V y V invertide	12 72
4.5.2	Riostras en V v Invertida	12
4.3.3	RIOSUIAS CII K	13
4.5.4	Kiosiras upo tensor en Λ	/4
4.4	DISENU DE PURTICUS	75
AKKIOS	IRADUS	13
4.4.1	Mecanismo plastico	13
4.4.2	Diseno de conexiones	15
4.5	PORTICOS ESPECIALES	
ARRIOS	TRADOS CONCENTRICAMENTE	/6
4.5.1	Objetivo general del diseno	76
4.5.2	Análisis	76
4.5.3	Riostras	76
4.5.4	Configuración de las riostras	77
4.5.5	Relación anchura-espesor	78
4.5.6	Conexiones viga-columna	78
4.5.7	Conexiones de las riostras	79
4.5.8	Requerimientos especiales para	
arriostran	nientos en V y V invertida	81
4.5.9	Arriostramientos en K	81
4.5.10	Sistemas duales	81
4.6	PÓRTICOS ORDINARIOS	
ARRIOS	TRADOS CONCÉNTRICAMENTE	81
4.7	UTILIZACIÓN DE RIOSTRAS PAR	А
LA REH	ABILITACIÓN SÍMSICA	82
Pórticos a	arriostrados excéntricamente	84
5.1	INTRODUCCIÓN	84
5.2	CONSIDERACIONES	
ESTRUC	TURALES	84
5.2.1	Configuración geométrica	84
5.2.2	Rigidez lateral	85
5.2.3	Comportamiento estructural del enlac	e
504	ou Desistancio del enlaca	00
J.∠.4	Deformación instástica del entre	00
J.Z.J	Deformación inelastica del enlace	88

5.2.6	Resistencia lateral del pórtico
527	Comparación entre enlaces cortos y
10rg00	00
J.J CONEVU	DETALLE DEL ENLACE I
CONEXI	UNES
5.4	DISENO DE PORTICOS
ARRIOS	FRADOS EXCENTRICAMENTE 91
5.4.1	Aspectos generales
5.4.2	Enlaces
5.4.3	Relaciones anchura-espesor
5.4.4	Conexiones
5.4.5	Sistemas duales
Pórticos c	on riostras de pandeo restringido 93
6 1	A SPECTOS GENERALES 03
6.2	COMPORTAMIENTO
ESIKUC	I UKAL DE LAS KIUS I KAS DE
PANDEO	RESTRINGIDO
6.3	DISENO DE PORTICOS CON
RIOSTRA	AS DE PANDEO RESTRINGIDO 96
6.3.1	Aspectos generales
6.3.2	Disposición de las riostras
6.3.3	Diseño de las riostras de pandeo
restringid	o
6.3.4	Conexiones
6.4	APLICACIÓN A LA
REHABI	[ITACIÓN ESTRUCTURAL 98]
Muros do	corta con plaças da acaro 00
	ASPECTOS CENEDALES
/.l	ASPECTOS GENERALES
/.1.1	Descripcion del sistema
7.1.2	Tipos de muros de corte con placas de
acero	100
7.1.3	Configuraciones de los muros 102
7.2	COMPORTAMIENTO
ESTRUC	TURAL 102
7.3	ANALISIS ESTRUCTURAL 103
7.4	CONEXIONES Y ASPECTOS
CONSTR	UCTIVOS 105
7.5	DISEÑO DE MUROS DE CORTE
CON PLA	CAS DE ACERO 106
751	Aspectos generales 106
7.5.1	Flamontos da horda
7.5.2	Diago de almo
7.5.5	
7.5.4	Zonas protegidas 10/
7.5.5	Conexiones 107
7.5.6	Placas de acero perforadas 107
7.5.7	Placas de acero con perforaciones de
esquina	107
7.6	APLICACIÓN A LA
REHABI	LITACIÓN ESTRUCTURAL 108
Estructure	as con secciones compuestas 100
8 1	INTRODUCCIÓN 100
0.1 Q 7	ΔΟΤΙΟΟς ΟΟΜΟΙΙΕςΤΟς ΝΟ
0.2	FUNTIONS CONFUESTOS NU
AKKIUS	109
8.2.1	11pos de porticos 109
8.2.2	Pórticos compuestos ordinarios 109

8.2.3	Pórticos compuestos intermedios 109
8.2.4	Pórticos compuestos especiales 110
8.2.5	Conexiones para pórticos compuestos
	111
8.2.6	Pórticos compuestos parcialmente
restringid	os112
8.3	PÓRTICOS COMPUESTOS
ARRIOS'	TRADOS113
8.3.1	Tipos de pórticos113
8.3.2	Pórticos compuestos ordinarios
arriostrad	os113
8.3.3	Pórticos compuestos especiales
arriostrad	os concéntricamente
8.3.4	Conexiones para pórticos compuestos
arriostrad	os114
8.3.5	Pórticos compuestos arriostrados
excéntric	amente115
8.4	MUROS DE CORTE COMPUESTOS
	115
8.4.1	Tipos de muros115
8.4.2	Muros de corte compuestos ordinarios
	117
8.4.3	Muros de corte compuestos especiales
	118
8.4.4	Muros compuesto con placas de acero
	119

Referencias Bibliográficas.....120

Notación

- Ag área bruta de la sección
- A_s área de refuerzo transversal en secciones compuestas
- A_{sp} área de las placas de acero de un muro compuesto
- a separación máxima entre rigidizadores de enlace
- b anchura de un elemento de la sección
- $b_{bf} \qquad \text{anchura del ala de la viga}$
- b_{cf} anchura del ala de la columna
- b_f anchura del ala
- b_{wc} anchura de la sección compuesta de hormigón
- C_d factor de amplificación de desplazamientos
- D cargas de peso propio de la estructura y otros elementos, o
 - diámetro de perforaciones
- d_b altura total de una viga
- d_c altura total de una columna, o altura de la sección compuesta de hormigón
- d_z anchura del panel nodal
- E acción del sismo
- F carga debida a fluidos, o fuerza lateral
- F_a coeficiente de sitio
- F_E resistencia lateral ante acciones sísmicas
- F_u resistencia de tracción mínima para el acero especificado
- F_v coeficiente de sitio
- F_y tensión mínima de fluencia para el acero especificado
- F_{ysr} tensión mínima de fluencia del refuerzo transversal
- f'_c resistencia a compresión del hormigón.
- g longitud libre de una viga de acople
- H carga debida al empuje lateral de suelos, del agua en el suelo o de otros materiales a granel
- h altura de piso
- h_o distancia entre baricentro de las alas
- I_b momento de inercia de la viga
- I_b momento de inercia de viga
- I_c momento de inercia de columna
- K factor de longitud de pandeo efectiva
- L sobrecarga de uso, o longitud de un miembro, o longitud de pandeo
- $L_{cf} \qquad \text{distancia libre entre elementos de borde vertical}$
- $L_h \qquad distancia \ entre \ r \acute{o}tulas \ plásticas \ en \ la \ viga.$
- $L_r \qquad \text{sobrecarga en cubiertas}$
- M_n momento nominal
- M_p momento plástico
- $M_{p,exp}\,$ momento flector esperado de la viga compuesta
- M_w magnitud momento
- P carga vertical
- P_{ac} resistencia ajustada a compresión
- P_{at} resistencia ajustada a tracción
- P_c carga axial de compresión
- P_E carga crítica de Euler

- P_r carga axial requerida
- P_{uc} resistencia requerida a compresión
- Pysc resistencia a tracción del núcleo de acero
- Pt carga axial de tracción
- P_y carga axial de fluencia
- p_a probabilidad anual de excedencia
- pt probabilidad de excedencia en un periodo de tiempo t
- Q factor de reducción para secciones esbeltas comprimidas
- R carga por lluvia, o factor de modificación de respuesta
- R_a resistencia requerida, método ASD
- R_d resistencia de diseño
- R_n resistencia nominal
- R_t relación entre la resistencia de tracción esperada y la resistencia de tracción mínima, F_u
- R_u resistencia requerida, método LRFD
- R_y relación entre la tensión de fluencia esperada y la tensión mínima de fluencia, F_y
- R_{μ} factor de ductilidad
- r radio de giro
- S carga de nieve o hielo
- S_{diag} distancia más corta entre centros de perforaciones
- S_{DS} aceleración espectral de diseño para T=0.2s
- S_{D1} aceleración espectral de diseño para T=1.0s
- S_s aceleración espectral MCE para T=0.2s
- S₁ aceleración espectral MCE para T=1.0s
- T acciones resultantes del impedimento de cambios dimensionales (originados por asentamientos, efectos térmicos, contracción por fragüe, fluencia lenta, etc.), o periodo de vibración fundamental de una estructura
- T_L periodo de transición para periodos largos
- T_R periodo de retorno
- V corte en un nivel
- V_D corte basal de diseño
- Ve corte basal elástico
- V_n resistencia a corte esperada
- V_Y corte basal de fluencia o resistencia lateral de la estructura
- t espesor de un elemento, o intervalo de tiempo
- t_{bf} espesor del ala de la viga
- t_{cf} espesor del ala de la columna
- t_p espesor total del panel nodal
- $t_w \qquad \text{espesor del alma}$
- W carga de viento
- w_z altura del panel nodal
- Y_{con} distancia desde la parte superior de la viga de acero a la parte superior del hormigón
- Y_{PNA} distancia desde la fibra de hormigón más comprimido hasta el eje neutro

- Z módulo plástico de una sección
- α ángulo de inclinación, o
 ángulo de las bandas de tracción
- α_c factor de reducción para pandeo poscrítico
- β factor de ajuste por resistencia a compresión
- Δ desplazamiento relativo de piso
- δ desplazamiento lateral
- $\delta_e \qquad desplazamiento \ lateral \ elástico \ (en \ general) \ o \\ desplazamiento \ elástico \ originado \ por \ V_D$
- $\delta_{S} \qquad \text{desplazamiento lateral de diseño}$
- $\delta_Y \qquad \text{desplazamiento lateral de fluencia}$
- φ factor de resistencia
- $\phi_v \qquad factor \ de \ resistencia \ a \ corte$
- $\lambda \qquad factor \ de \ carga$
- λ_{hd} relación anchura-espesor límite para miembros con alta ductilidad

- λ_{md} relación anchura-espesor límite para miembros con moderada ductilidad
- $\lambda_{d,}\,\lambda_{r}~$ relaciones anchura-espesor límites para la clasificación de secciones
- μ ductilidad
- θ índice de estabilidad, o
 distorsión horizontal de piso
- ρ factor de redundancia
- ξ factor de amortiguamiento
- Ω factor de seguridad
- Ω_D factor de sobrerresistencia de diseño
- $\Omega_M ~~ factor ~de ~sobrerresistencia ~debida ~al material$
- $\Omega_{o} \qquad factor \ de \ sobrerresistencia$
- Ω_S factor de sobrerresistencia del sistema
- φ factor de ajuste por endurecimiento de deformación

Capítulo 1 Introducción

1.1 OBJETIVO, ALCANCES Y ORGANIZA-CIÓN DEL TEXTO

El objetivo fundamental de esta publicación es presentar una guía de utilidad práctica para los ingenieros estructurales vinculados al diseño sismorresistente de construcciones de acero y de construcciones con secciones compuestas de acero y concreto (es importante indicar que en algunos países estas construcciones se denominan como mixtas). En ella se incluyen conceptos básicos y criterios de diseño para los sistemas resistentes más usuales, como son los pórticos sin arriostrar (pórticos a momento) y los pórticos arriostrados concéntrica y excéntricamente. Además, se describen algunos sistemas más innovadores como son los pórticos con riostras de pandeo restringido y los muros con placas de acero, los cuales representan avances recientes de la ingeniería estructural que ya han sido aplicados en países como Estados Unidos y Japón. Para su redacción, se ha tomado como referencia la publicación Seismic Provisions for Structural Steel Buildings (AISC 2010a), preparada por el American Institute of Steel Construction, AISC, considerando la amplia difusión que este documento tiene en Latinoamérica, ya sea como reglamento de diseño o como bibliografía de consulta.

Es importante aclarar, para no defraudar las expectativas del lector, que el desarrollo de los temas se realiza en forma general, haciendo énfasis en los aspectos conceptuales. No se incluyen descripciones detalladas de todas las especificaciones de diseño, demostraciones, desarrollos analíticos o ejemplos numéricos como los que pueden encontrarse en libros especializados, manuales de diseño o artículos técnicos. No obstante ello, se incluyen referencias bibliográficas y datos adicionales de consulta que son de utilidad para complementar y profundizar los temas tratados.

Para una adecuada comprensión de este texto, el lector debe contar con conocimientos sobre análisis estructural, conceptos básicos de dinámica y criterios de diseño de estructuras de acero. En relación a este último tema, existe una variada bibliografía a consultar, por ejemplo, Bruneau et al. (2011), McCormac y Csernak (2012), McCormac (2002), Salmon et al. (2008), Vinnakota (2006). Para el estudio del diseño de secciones compuesta de acero y concreto se recomiendan los textos de Viest et al (1997), Nethercot (2003), Taranath (2012). Desde el punto de vista reglamentario, el documento *Specification for Structural Steel Buildings* (AISC, 2010b) representa la referencia principal.

En las secciones siguientes de este capítulo se presentan algunos conceptos básicos vinculados a los criterios de diseño según los métodos de tensiones admisibles, ASD, y de factores de carga y resistencia, LRFD, a riesgo sísmico y a temas generales de estructuras dúctiles de acero. En el Capítulo 2 se incluyen nociones del diseño sismorresistente que permiten comprender los criterios de verificación presentes en las especificaciones AISC, junto con una descripción de los tipos estructurales para construcciones de acero. Los Capítulos 3, 4 y 5 presentan las principales especificaciones y requerimientos vinculados a los tres tipos de estructuras más usados como sistema sismorresistente, esto es: pórticos no arriostrados, pórticos arriostrados concéntricamente y pórticos arriostrados excéntricamente. La descripción de los aspectos más significativos para el diseño de pórticos con riostras de pandeo restringido y muros de corte con placas de acero se incluye en los capítulos 6 y 7. Finalmente, el capítulo 8 presenta el diseño de construcciones con secciones compuestas de acero y concreto.

A lo largo del texto se indican diversas siglas empleadas en las especificaciones AISC y en la bibliografía técnica en idioma inglés. En algunos casos no se ha realizado la traducción en idioma español porque las mismas son de aplicación frecuente en Latinoamérica y su uso facilita la lectura de las especificaciones y de la bibliografía.

1.2 MÉTODOS DE DISEÑO: ASD Y LRFD

Las especificaciones para construcciones de acero vigentes en Estados Unidos de América (AISC, 2010b) consideran dos métodos generales de diseño: el método de las tensiones admisibles (ASD por las siglas de *Allowable Strength Design*), y el método de factores de carga y resistencia (por las siglas de *Load and Resistance Factor Design*).

El primer método se basa en verificar que las tensiones inducidas en los elementos estructurales no excedan una tensión admisible, la cual resulta de dividir la resistencia del material (usualmente la tensión de fluencia F_y) por un factor de seguridad Ω . Este procedimiento es ampliamente conocido por los ingenieros estructurales y ha sido utilizado a lo largo de muchas décadas para el diseño de estructuras de diversos materiales.

Por el contrario, el método LRFD es más reciente; algunos países de Latinoamérica lo han adoptado en los últimos años, mientras que otros países continúan con el método ASD. A nivel académico, los datos obtenidos de un relevamiento informal en distintas universidades de Latinoamérica indican qué solo algunas universidades ha incorporado en los planes de estudio de ingeniería civil la enseñanza del método LRFD. Es por ello que resulta conveniente presentar una descripción conceptual del mismo en esta publicación.

El método de diseño LRFD se basa en la evaluación de una serie de estados límites, los cuales pueden definirse como una condición, aplicable a toda la estructura o a uno de sus componentes, más allá de la cual no queda satisfecho el comportamiento requerido o esperado. Los estados límites se dividen en dos grupos:

- Estados límites de servicio, ELS: son aquellos vinculados a condiciones de funcionamiento y su incumplimiento puede afectar el normal uso de la construcción. Como ejemplo, puede mencionarse el control de deformaciones excesivas en vigas o de vibraciones en un entrepiso cuando se someten a cargas de servicio.
- Estados límites de resistencia (o últimos), ELU: son los relacionados con la capacidad resistente ante cargas últimas y se vinculan directamente con la seguridad estructural para prevenir el daño y el colapso. Estos estados varían según el tipo de solicitación actuante, y usualmente se requiere verificar varios de ellos para un mismo componente. Algunos de los estados límites de resistencia más usuales son: fluencia, rotura, formación de rótulas plásticas, inestabilidad global de un componente, pandeo local y pandeo lateral torsional.

La verificación de los estados límites de resistencia se realiza a través de la comparación entre las solicitaciones resultantes de aplicar las combinaciones de cargas mayoradas (en estado último) y la resistencia correspondientes a dicho estado, lo cual puede expresarse como:

Resistencia requerida, R_u (demanda) \leq Resistencia de diseño, R_d (suministro)

En la cuantificación de este criterio de verificación se busca que la resistencia requerida represente el máximo valor probable del efecto inducido por las cargas (Q + Δ Q), mientras que la resistencia de diseño debe representar un valor mínimo (R_n + Δ R_n) para considerar la incertidumbres propias de esta determinación analítica. Este criterio de verificación puede expresarse matemáticamente a través de la siguiente expresión:

$$\Sigma\lambda_{i} Q_{i} \leq \phi R_{n} \tag{1-1}$$

donde λi representa los factores de carga que multiplican las distintas cargas o sobrecargas de servicio Q_i , ϕ es el factor de resistencia correspondiente a ese estado límite y R_n es la resistencia nominal obtenida a partir de expresiones o procedimientos indicados en los reglamentos vigentes y considerando estimaciones conservadoras acerca de las propiedades de los materiales. Para la cuantificación de los factores de carga y resistencia se considera un modelo probabilístico (en el cual las cargas Q y las resistencias R se representan como variables aleatorias estadísticamente independientes), la calibración y comparación con el método ASD y la evaluación fundamentada en la experiencia y ejemplos desarrollados por ingenieros estructurales.

Los factores de resistencia ϕ multiplican la resistencia nominal o teórica, a los efectos de considerar incertidumbres debidas a los procedimientos de cálculo, materiales, dimensiones, mano de obra, etc. Los valores que adopta este factor dependen del tipo de componente y de la solicitación actuante. Así por ejemplo, se tiene: 0.90 para fluencia en miembros en tracción, 0.75 para fractura, 0.85 para miembros en compresión y 0.90 para componentes sometidos a flexión y corte.

El método LRFD considera diversas combinaciones de carga, las cuales surgen de asumir que cada una de ellas actúa separadamente con el máximo valor esperado en la vida útil de la construcción (acción de base), mientras que las otras cargas (acciones de acompañamiento) adoptan valores usuales, todas con igual probabilidad de ocurrencia. A modo de ejemplo, se presentan combinaciones de cargas según lo requerido por ASCE/SEI 7-10:

1.	1.4D	
2.	$1.2D + 1.6L + 0.5(L_r \circ S \circ R)$	
3.	$1.2D + 1.6(L_r \circ S \circ R) + (L \circ 0.5W)$	
4.	$1.2D + 1.0W + L + 0.5(L_r \circ S \circ R)$	
5.	1.2D + 1.0 E + L + 0.2S	
6.	0.9D + 1.0W	
7.	0.9D + 1.0E	(1-2)

donde D es la carga permanente por peso propio, también llamada carga muerta, F la carga debida a fluidos, L es la sobrecarga de uso o carga viva (que puede reducirse a la mitad para las combinaciones 3, 4 y 5, en ciertos casos definidos por el reglamento), L_r es la sobrecarga en cubiertas, S es la carga de nieve, R es la carga por lluvia, W la carga de viento y E representa la acción del sismo. Es importante mencionar que en las combinaciones 3, 4 y 5 está permitido reducir el efecto de la carga L cuando el valor de la sobrecarga de uso definido por el reglamento es menor o igual a 4.79 kN/m². Puede observarse en las combinaciones de carga definidas por las Ecuaciones (1-2) que el factor correspondiente a la acción sísmica es 1.0. Ello es así, porque los reglamentos vigentes definen dicha acción a un nivel correspondiente a estado último, a diferencia de otras acciones, como la carga L cuyos valores se determinan a nivel servicio y luego son mayorados.

Este reglamento también considera casos especiales como las cargas por hielo, inundaciones, la acción resultante del impedimento de cambios dimensionales y eventos extraordinarios (con baja probabilidad de ocurrencia) como fuego, explosiones e impacto de vehículos sobre las construcciones. Además, se presentan requerimientos para la consideración de cargas debidas a la presión de fluidos (F) y a la presión lateral (H) del suelo, del agua en suelos o de materiales a granel (granos, áridos, etc).

De lo expuesto, y a modo de resumen, puede concluirse que las diferencias entre ambos métodos son tanto conceptuales como operativas. El método ASD plantea el diseño a partir de comparaciones de tensiones, considerando combinaciones de estados de carga definidos a nivel de servicio. El coeficiente de seguridad engloba, en un único valor, las distintas incertidumbres vinculadas a las acciones y a la resistencia de la estructura. El método LRFD considera estados límites de servicio y de resistencia. Éstos últimos son los que se vinculan a la seguridad estructural y se verifican mediante una comparación de esfuerzos (momentos flectores, esfuerzos de corte, cargas axiales) según corresponda. La identificación de los estados límites de falla es una parte integral del proceso de diseño. La combinación de cargas se realiza incluyendo factores de carga que adoptan distintos valores según el estado considerado; dichos valores surgen de consideraciones estadísticas y reflejan las probables variaciones de las acciones de diseño. La resistencia requerida o solicitaciones así obtenidas corresponden a estado último. La resistencia de diseño incluye un factor de resistencia, cuyo valor depende del tipo de estado límite (modo de falla) considerado.

Desde el año 2005 las especificaciones AISC incorporaron un formato unificado en el que se incluye en forma simultánea ambos métodos: LRFD y ASD. No obstante ello, se presenta el método ASD con un formato modificado con el objeto de mantener un esquema de verificación similar al del método LRFD. Es por ello que se aplica la verificación por estados límite y los coeficientes de seguridad adoptan valores diferentes según cada estado. El criterio de verificación establece que la resistencia admisible, determinada como la resistencia nominal, R_n, dividida por el coeficiente de seguridad, Ω , debe ser mayor que la resistencia requerida, R_a, por las cargas externas:

$$R_a \le R_n \, / \, \Omega \tag{1-3}$$

Las combinaciones de estados de carga requeridas para el método ASD, según el reglamento ASCE/SEI 7-10, *MinimumDesign Loads for Buildings and Other Structures* (ASCE, 2010) para determinar la resistencia requerida R_a son:

1. D	
2. D + L	
3. $D + (L_r \circ S \circ R)$	
4. $D + 0.75 L + 0.75 (L_r \circ S \circ R)$	
5. $D + (0.6W \circ 0.7E)$	
$6a.D + 0.75L + 0.75(0.6W) + 0.75(L_r \ o \ S \ o \ s \ o \ S \ o \ s \ s \ s \ s \ s \ s \ s \ s \ s$	(R)
6b. D + 0.75L + 0.75(0.7E) + 0.75S	
7. $0.6D + 0.6W$	
8. $0.6D + 0.7E$	(1-4)

Al igual que en el caso de combinaciones de carga para el método LRFD, se consideran adicionalmente casos especiales como las cargas por hielo, inundaciones, la acción resultante del impedimento de cambios dimensionales y eventos extraordinarios (con baja probabilidad de ocurrencia) como fuego, explosiones e impacto de vehículos sobre las construcciones.

La Tabla 1-1, a modo de resumen, presenta los estados límites de resistencia para miembros sometidos a distintas solicitaciones, indicando en cada caso el valor el factor de resistencia ϕ y del coeficiente de seguridad Ω requerido por el reglamento ANSI/AISC 360-10. Para el caso de conexiones, se presentan los valores correspondientes en la Tabla 1-2.

distintos casos.					
Caso	Estado límite de resistencia	Factor de resistencia	Coef. de seguridad		
Miembros traccionados	Fluencia en el área neta	0.90	1.67		
	Rotura en el área bruta	0.75	2.00		
	Pandeo flexional	0.90	1.67		
Miembros comprimidos	Pandeo torsional o flexo-torsional	0.90	1.67		
	Pandeo local	0.90	1.67		
	Plastificación	0.90	1.67		
Miembros	Pandeo lateral- torsional	0.90	1.67		
flexionados	Pandeo local de ala	0.90	1.67		
	Pandeo local de alma	0.90	1.67		
Miembros	Fluencia por corte	0.90	1.67		
corte	Pandeo de alma	0.90	1.67		
	Caso Miembros traccionados Miembros comprimidos Miembros flexionados Miembros sometidos a corte	CasoEstado límite de resistenciaMiembros traccionadosFluencia en el área netaMiembros traccionadosPandeo flexionalMiembros comprimidosPandeo torsional o flexo-torsionalMiembros flexionadosPlastificaciónMiembros flexionadosPandeo localMiembros sometidos a cortePandeo local de alaMiembros flexionadosPandeo local de ala	CasoEstado límite de resistenciaFactor de resistenciaMiembros traccionadosFluencia en el área neta0.90Rotura en el área bruta0.75Miembros comprimidosPandeo flexional o flexo-torsional o flexo-torsional0.90Pandeo local0.90Pandeo local0.90Pandeo lateral- torsional0.90Pandeo local de ala0.90Pandeo local de ala0.90Pandeo local de ala0.90Pandeo local de ala0.90Pandeo local de ala0.90Pandeo local de ala0.90Pandeo local de ala0.90Miembros 		

Tabla 1-1. Estados límites de resistencia y valores del factor de resistencia y coeficiente de seguridad para distintos casos

Tabla 1-2.	Valores del factor de resistencia y coeficien-
	te de seguridad para conexiones.

Caso	Factor de resistencia	Coef. De seguridad
Conexiones soldadas: metal base	0.90	1.67
Conexiones soldadas: soldadura	0.80	1.88
Conexiones soldadas: corte	0.75	2.00
Conexiones apernadas	0.75	2.00
Conexiones a deslizamiento crítico (ELS)	1.00	1.50
Conexiones a deslizamiento crítico (ELU)	0.85	1.76

Es importante aclarar que, actualmente, los reglamentos ANSI/AISC 360-10 y ANSI/AISC 341-10 incluyen ambos métodos, LRFD y ASD, en forma paralela (cuando corresponde, se presentan las ecuaciones de verificación para cada método). No obstante ello, en este texto se discutirán y presentarán ecuaciones de verificación o dimensionamiento vinculadas únicamente al método LRFD. Ello se debe, principalmente, a que este método representa un criterio más moderno (el mismo que se usa para diseño de estructuras de hormigón armado), que incorpora en forma racional las incertidumbres en la determinación de cargas y resistencias. Además, el autor considera que la incorporación en paralelo del método ASD representa una solución práctica, a los efectos de que los profesionales que durante años o décadas usaron el método ASD puedan realizar una adecuada transición hacia un procedimiento nuevo.

1.3 RIESGO SÍSMICO E INGENIERÍA SIS-MORRESISTENTE

La humanidad ha experimentado a lo largo de su historia el efecto destructivo de los terremotos. En el siglo XX, estas catástrofes naturales han ocasionado una media anual del orden de 14.000 muertos, por encima de otros desastres como ciclones, huracanes, inundaciones, avalanchas y erupciones volcánicas (Kovach, 1995). Adicionalmente, originan cuantiosas pérdidas económicas como resultado del daño en las obras de infraestructura pública y construcciones privadas, lo cual impacta negativamente en el desarrollo de las zonas afectadas. Latinoamérica no es ajena a esta situación y muchos de sus países han sufrido el efecto devastador de estos eventos.

En el año 1910 la Sociedad Sismológica de América identificó los tres aspectos principales del problema sísmico: el terremoto en sí mismo (cuándo, dónde y cómo ocurren los sismos), el movimiento del terreno asociado y su efecto sobre las construcciones (McGuire, 2004). Los dos primeros aspectos representan la peligrosidad o amenaza sísmica de un determinado lugar, mientras que el tercer aspecto se vincula la vulnerabilidad. Ésta puede definirse como la susceptibilidad o predisposición de las construcciones a sufrir daño ante la ocurrencia de fenómenos desestabilizantes de origen natural o antropogénico. A partir de consideraciones holísticas, algunos autores amplían el concepto de vulnerabilidad considerando no sólo las obras o construcciones sino toda la comunidad.

El riesgo sísmico, en términos generales, puede interpretarse como una medida de las pérdidas potenciales (económicas, sociales, ambientales, etc.) que pueden originar los sismos en un periodo de tiempo especificado. Desde un punto de vista más técnico, el riesgo sísmico surge como resultado de la interacción de dos variables principales: la amenaza sísmica y la vulnerabilidad (para más información sobre el tema consultar el trabajo de Carreño et al, 2005). De ahí la importancia de no confundir amenaza y riesgo, como muchas veces ocurre en la práctica. En resumen, la amenaza sísmica describe el potencial que presenta el fenómeno, por ejemplo en términos de sacudimiento, y que obviamente puede resultar en consecuencias desfavorables para la sociedad y sus obras de infraestructura. El riesgo sísmico cuantifica la probabilidad de ocurrencia de esas consecuencias.

No es posible actualmente modificar la amenaza sísmica, pero la ingeniería sí dispone de soluciones para reducir la vulnerabilidad de las construcciones, y por ende el riesgo sísmico. La experiencia recogida a lo largo de décadas indica, sin lugar a dudas, que el daño producido por los sismos puede controlarse y reducirse a niveles aceptables mediante medidas sistemáticas de prevención. La formulación de estas medidas debe realizarse en forma integral, con criterio multidisciplinario e incluyendo no solo aspectos ingenieriles, sino también consideraciones sociales, educacionales, de manejo de emergencia, etc. No obstante ello, es obvio que uno de los aspectos claves para asegurar el éxito de este proceso se vincula con la seguridad estructural de las construcciones sismorresistentes.

La ingeniería estructural sismorresistente es una disciplina relativamente nueva y resulta difícil indicar con precisión cuándo y dónde se originó. Lo cierto es que surgió como una necesidad imperiosa para controlar el efecto de los sismos. Los terremotos de San Francisco, EEUU, en 1906, y de Mesina, Italia, en 1908, pueden considerarse como dos hechos claves que mostraron la vulnerabilidad de los centros urbanos ubicados en zonas sísmicas y originaron un cambio significativo en los criterios de cálculo de la época. Como resultado de ello, y teniendo en cuenta las observaciones realizadas, se propuso considerar una fuerza estática horizontal para representar el efecto sísmico, cuyo valor se estimaba como un 10% del peso de la construcción. De esta forma se trataba de representar, en forma simplificada, pero racional, la naturaleza dinámica del problema y los efectos inerciales producidos por la vibración sísmica sobre la masa de la construcción. Posteriormente, la experiencia recogida in situ tras la ocurrencia de terremotos, la investigación analítica y experimental y el desarrollo de reglamentos de diseño sismorresistente han contribuido para un avance continuo y significativo durante los últimos 100 años.

En la actualidad la ingeniería sismorresistente dispone de soluciones adecuadas que, mediante el uso de distintos materiales estructurales, sistemas constructivos, dispositivos innovadores para el control de vibraciones, criterios de diseño y métodos de análisis confiables, permiten reducir el riesgo sísmico.

Sin embargo, la reducción del riesgo sísmico no se ha alcanzado en forma uniforme a escala mundial. Ello se debe a distintas razones, algunas de las cuales no son de carácter técnico o ingenieril. Es por ello que uno de los mayores desafíos, particularmente en Latinoamérica, es lograr la implementación práctica de las soluciones que la ingeniería sismorresistente ha desarrollado tanto para construcciones nuevas como para la rehabilitación de estructuras existentes que no cumplen con los niveles de seguridad requeridos en la actualidad. Uno de los problemas que se observa reiteradamente en muchos lugares afectados por terremotos es la discrepancia entre los criterios de diseño y la estructura realmente construida. Por desconocimiento, negligencia o razones de costo, se realizan modificaciones en obra que luego conducen a daño o colapso de los componentes estructurales.

1.4 ESTRUCTURAS DÚCTILES DE ACERO

1.4.1 El acero como material estructural

El acero de uso estructural es un material de fabricación industrializada, lo cual asegura un adecuado control de calidad. Este material se caracteriza por una elevada resistencia, rigidez y ductilidad (esto es capacidad de soportar deformaciones plásticas sin disminuir su capacidad resistente), por lo cual su uso es muy recomendable para construcciones sismorresistentes.

En el diseño y verificación de componentes estructurales de acero, uno de los parámetros mecánicos más importantes es la tensión mínima de fluencia, F_v. Adicionalmente, en algunos estados límites vinculados con la fractura se aplica la resistencia de tracción, Fu. Ambos parámetros son propiedades nominales del acero especificado. Los aceros convencionales presentan resistencias menores y mayor ductilidad, mientras que los aceros de alta resistencia en general presentan una ductilidad reducida (ver Figura 1-1). Esta es la razón por la cual las especificaciones sísmicas ANSI/AISC 341-10 limitan la tensión mínima de fluencia a 345 MPa en componentes donde se espera que se desarrolle comportamiento inelástico. Para el caso de estructuras con ductilidad limitada este límite se incrementa a 380 MPa (sistemas "ordinarios", según se explica en los capítulos correspondientes a cada sistema estructural).

Fig. 1-1. Curvas tensión-deformación para tres aceros ASTM.

Los procedimientos de diseño para algunos sistemas estructurales se basan en la aplicación del método de diseño por capacidad (el cual se presenta con más detalle en el Capítulo 2 de este libro). Este método requiere, en ciertos casos, estimar en forma realista la resistencia esperada de los componentes estructurales, en lugar de la resistencia de diseño obtenida a partir de la tensión de fluencia mínima F_v o de la resistencia de tracción, F_u. Para cuantificar el incremento de la resistencia real o esperada de los componentes estructurales, en relación a la resistencia nominal, se define el factor R_v como la relación entre la tensión de fluencia esperada y la tensión mínima de fluencia, F_v. Con igual criterio, para el caso de fractura se define el factor R_t como la relación entre la resistencia de tracción esperada y la resistencia F_u. Estos dos factores, que cuantifican la sobrerresistencia del material, deben determinarse estadísticamente a partir de información experimental obtenida del ensayo de probetas de acero, por lo cual sus valores podrían cambiar de un país a otro.

Para el caso de los aceros fabricados bajo normas ASTM, el factor R_y varía entre 1.1 y 1.6, y el factor R_u varía entre 1.1 y 1.3, dependiendo del tipo de acero y de la forma del componente estructural (planchuelas, tubos o perfiles) y se define en la Tabla A3.1 del reglamento ANSI/AISC 341.10. Los valores de R_y y R_u pueden adoptarse a partir de resultados experimentales obtenidos de ensayos realizados según normas ASTM, utilizando materiales y dimensiones similares al material a emplear en la obra.

Las curvas tensión-deformación del acero (como las indicadas en la Figura 1-1) son modificadas por la velocidad de deformación (*strain rate*). En los aceros estructurales se observa que la tensión de fluencia y la resistencia a tracción aumentan en la medida que se incrementa la velocidad de deformación. Los resultados de ensayos indican que este incremento es del orden del 5 al 10% para los niveles de velocidad de deformación esperados en una estructura sometida a un terremoto (Bruneau, et al. 2011). Es por ello que este efecto usualmente se desprecia en el análisis y diseño de estructuras sismorresistentes, sin embargo, es un aspecto crucial que sí debe considerarse en el caso de estructuras de acero diseñadas para resistir explosiones o impacto de vehículos.

Otro aspecto importante a considerar en el acero es el efecto Bauschinger. Cuando el material se somete a una carga monotónica, el inicio de la fluencia se observa claramente en el diagrama tensión-deformación mediante un quiebre pronunciado (ver curvas para aceros A36 y A572 en Figura 1-1). Sin embargo, cuando las cargas se aplican en forma cíclica, luego de incursionar en rango plástico, el paso de la rama de carga o recarga (con pendiente proporcional al módulo de elasticidad E) a la rama de fluencia se produce en forma gradual, sin mostrar un quiebre marcado del diagrama., como se indica en la Figura 1-2. Este comportamiento particular del acero se conoce como efecto Bauschinger y sus causas pueden explicarse a partir de consideraciones basadas en la estructura policristalina del material y de los planos de deslizamiento que se producen cuando el material fluye (para más detalles consultar Bruneau et al., 2011).

Cuando se emplean perfiles pesados, esto es con espesores iguales o mayores a 38 mm, las especificaciones sísmicas requieren que se realicen ensayos de Charpy sobre probetas con muesca en V (Charpy Vnotch test) a los efectos de verificar que la energía absorbida en el impacto sea mayor que 27 J a 21 °C. Esta misma condición debe verificarse en el caso de placas de acero con espesores iguales o mayores de 50 mm que se emplearán en miembros armados, en placas de conexión donde se espera el desarrollo de deformaciones plásticas bajo la acción del sismo y en el núcleo de riostras de pandeo restringido. La Figura 1-3 muestra las características de una probeta típica y un esquema del dispositivo de ensayos. Es importante recordar que este ensayo cuantifica la energía requerida para fracturar la probeta (con entalladura) mediante la medición de la altura inicial y final de un péndulo que impacta sobre la misma.

Fig. 1-2. Efecto Bauschinger en la respuesta cíclica del acero.

Si bien las ventajas del acero como material estructural son significativas, es importante también conocer sus limitaciones, de modo de poder contrarrestar sus efectos negativos. El acero usualmente se considera como un material isotrópico, sin embargo, los datos experimentales indican que puede exhibir efectos de anisotropía en términos de resistencia y ductilidad. Ello se debe a la presencia elementos no-metálicos o inclusiones en la constitución del acero, los cuales son aplanados durante el proceso de laminación. Estas inclusiones actúan como micro-fisuras planas que debilitan el material, particularmente cuando se somete a tracción en la dirección perpendicular a la que fue laminado (ver Figura 1-4). Este fenómeno se conoce como desgarramiento laminar (lamellar tearing) y afortunadamente no es significativo, salvo en secciones con placas gruesas o perfiles pesados donde además se

generan fuertes restricciones de deformación por soldadura. En la actualidad el problema del desgarramiento laminar ha sido controlado mediante la reducción del contenido de inclusiones y adecuados detalles de uniones soldadas. Una solución efectiva es diseñar conexiones soldadas con biseles profundos que penetran en las secciones a ser soldadas, evitando de ese modo inducir tensiones de tracción perpendiculares a la superficie de la placa. No obstante ello, el problema del desgarramiento laminar puede ser un aspecto importante a considerar en la rehabilitación de estructuras de acero existentes, construidas cuando este fenómeno y sus consecuencias no se conocían adecuadamente.

Fig. 1-3.Esquema del ensayo de Charpy y su probeta

Fig. 1-4. Fenómeno de desgarramiento laminar.

Otra característica inconveniente del acero se relaciona con el fenómeno de fatiga, por el cual se produce la falla prematura del material bajo la repetición de ciclos de carga. Ello es consecuencia de la propagación de fisuras iniciadas en imperfecciones o dislocaciones en la estructura cristalina del material. La información experimental disponible indica que deben considerarse dos casos o situaciones diferentes: fatiga de alto y bajo ciclaje.

La fatiga de alto ciclaje ocurre por la repetición de una gran cantidad de ciclos de carga y la falla se produce por fractura a un nivel de tensiones menor que la resistencia a tracción e incluso menor que tensión de fluencia, obtenida del ensayo monotónico de tracción. Este fenómeno puede afectar puentes sometidos a la acción variable del tránsito vehicular, puentes grúa, estructuras off-shore, componentes de máquinas, etc. En el caso de la fatiga de bajo ciclaje, la fractura se produce luego de la repetición de un número reducido de ciclos en los que se han desarrollado deformaciones plásticas. La falla ocurre a un nivel de deformaciones menor que la deformación última del material obtenida del ensayo monotónico de tracción. Es importante resaltar que la evaluación experimental de la resistencia a fatiga de bajo ciclaje obtenida con probetas puede ser muy distinta de la que surge al ensayar componentes estructurales completos. Esta diferencia se origina en la significativa influencia que tienen las deformaciones pláticas resultantes de la ocurrencia de pandeo local. El efecto de fatiga de bajo ciclaje resulta en una disminución de la capacidad de deformación del acero en rango plástico y por ende disminuye la ductilidad del material y de la estructura. Es por ello que éste es un aspecto a considerar en el diseño sismorresistente, debido a la naturaleza dinámica del terremoto y a las hipótesis de diseño que usualmente consideran el comportamiento inelástico de la estructura.

Finalmente, debe recordarse que la ductilidad del acero puede verse afectada por otros efectos o factores, tales como la temperatura, los problemas relacionados con la soldadura (calentamiento-enfriamiento, fragilización por hidrógeno) y las técnicas de fabricación (corte, perforación, etc). La discusión detallada de estos aspectos se encuentra fuera del alcance de esta publicación (el texto de Bruneau et al., 2011, presenta una completa discusión de estos temas). La presencia de tensiones residuales, inducidas tanto en el proceso de laminación como en las zonas afectadas por la soldadura, no tiene un efecto significativo en la ductilidad del material. Estas tensiones, que representan un sistema auto-equilibrado, se consideran en el diseño mediante un criterio práctico simplificado que consiste en reducir el límite de fluencia.

1.4.2 Aspectos generales del comportamiento estructural

La estructura de acero es un sistema formado por miembros vinculados entre sí mediante conexiones, de modo que todo el conjunto cumpla con las condiciones de estabilidad, resistencia y rigidez requeridas para un adecuado desempeño. Las ventajas del acero, en relación a su adecuada resistencia a tracción y ductilidad, son válidas también para todo el sistema estructural. El mayor desafío en el diseño de estructuras de acero consiste en limitar o controlar los problemas de inestabilidad en miembros o zonas localizadas sometidas a compresión. Puede definirse la condición de estabilidad como la capacidad de los miembros, placas y elementos de acero sometidos a compresión de mantener su posición inicial de equilibrio y de soportar las cargas que los solicitan. El estudio detallado de los fenómenos de inestabilidad puede encontrarse en la bibliografía especializada (las referencias más completas son Galambos, 1998 y Ziemian, 2010).

Los fenómenos de inestabilidad pueden agruparse en dos tipos principales. El primero comprende aquellos fenómenos de inestabilidad que abarcan todo o gran parte de un miembro de acero, por lo que se denomina pandeo global. En este grupo se incluyen varios estados límites, como el pandeo flexional, torsional y flexo-torsional en miembros comprimidos y el pandeo lateral-torsional en miembros flexionados.

El segundo grupo de problemas de inestabilidad se relaciona con el pandeo localizado de las placas o componentes de las secciones metálicas, y se denomina pandeo local o abollamiento.

Con el objeto de ilustrar estos conceptos, la Figura 1-5 muestra el caso de pandeo global de una riostra debido a los esfuerzos de compresión generados por la acción del sismo de Hyogo-ken Nanbu (Kobe), Japón, en 1995, mientras que la Figura 1-6 presenta ejemplos de pandeo local o abollamiento correspondientes a ensayos de laboratorio para dos tipos de secciones.

Fig. 1-5. Pandeo de una riostra, terremoto de Hyogoken Nanbu, Japón (Cortesía de National Information

Service for Earthquake Engineering, EERC, University of California, Berkeley).

Como se mencionó previamente, el pandeo lateraltorsional es un problema de inestabilidad que puede afectar a los miembros flexionados, caso típico de las vigas en estructuras de pórticos. Este problema se origina por el pandeo lateral de la parte comprimida de la viga, que es parcialmente restringido por la parte traccionada (que actúa como un elemento estabilizante). En edificios con entrepisos que pueden considerarse como diafragmas rígidos (por ejemplo, losas de hormigón armado) el ala superior de las vigas usualmente se encuentra impedida de desplazarse lateralmente. El ala inferior de la viga puede también estar sometida a compresión, por ejemplo por la acción de momentos flectores inducidos por sismos. En esos casos es necesario arriostrar dicha ala para impedir el desplazamiento lateral en ciertos puntos y controlar así la ocurrencia del pandeo lateral-torsional.

Fig. 1-6. Ejemplos de pandeo local (a) en la base de una columna sometida a compresión y flexión y (b) en un tubo comprimido

1.4.3 Clasificación de secciones

El pandeo local es un fenómeno complejo, propio de las secciones de acero (perfiles laminados y secciones armadas), las cuales están formadas por placas delgadas en relación a las dimensiones de la sección, para lograr un uso óptimo del material. El tratamiento matemático de este tipo de pandeo es complejo, particularmente en rango inelástico, razón por la cual las especificaciones de diseño usualmente consideran una verificación indirecta y simplificada de este fenómeno. En el caso de la reglamentación AISC, un aspecto fundamental para la evaluación y control del problema de pandeo local es la clasificación de secciones de acero en dos o tres grupos a partir de la relación anchuraespesor, b/t o h/tw, de los elementos componentes de la sección (algunos autores denominan como esbeltez local a esta relación, por analogía con el fenómeno de pandeo global).

En el caso de miembros flexionados, las secciones se clasifican en tres grupos, según las siguientes condiciones:

- Secciones compactas: las alas están vinculadas en forma continua con el alma o las almas y todos los elementos comprimidos cumplen que la relación anchura-espesor no excede el valor λ_p
- Secciones no compactas: todos los elementos comprimidos cumplen que la relación anchura-espesor no excede el valor λ_r
- Secciones esbeltas: al menos un elemento comprimido cumple que la relación anchura-espesor es mayor que λ_r

En el caso de miembros comprimidos, las secciones se clasifican en dos grupos, según las siguientes condiciones:

- Secciones no esbeltas: todos los elementos componentes cumplen que la relación anchura-espesor es menor o igual que el valor λ_r
- Secciones esbeltas: al menos un elemento cumple que la relación anchura-espesor es mayor que λ_r

donde λ_p y λ_r son esbelteces límites cuyo valor se determina a partir de la Tabla B4.1a del reglamento AN-SI/AISC 360-10, según el tipo de elemento, el estado de solicitación y de otras características de la sección. En la mencionada tabla se consideran elementos no rigidizados, que son aquellos que tienen un solo borde vinculado en la dirección paralela a la fuerza de compresión, y elementos rigidizados, que presentan sus dos bordes vinculados.

A modo de ejemplo, si se considera un perfil laminado I, Figura 1-7, sometido a flexión los valores límites son:

Ala (elemento no rigidizado):

$$\lambda_{\rm p}=0.38\sqrt{\frac{E}{F_{\rm y}}},\qquad\lambda_{\rm r}=1.00\sqrt{\frac{E}{F_{\rm y}}}$$

Alma (elemento rigidizado):

$$\lambda_{\rm p}=3.76\sqrt{\frac{E}{F_{\rm y}}},\qquad\lambda_{\rm r}=5.70\sqrt{\frac{E}{F_{\rm y}}}$$

Fig. 1-7. Ejemplo de una sección formada por un perfil laminado I (AISC 2010b).

La Figura 1-8 presenta un esquema general donde se muestra el efecto que la clasificación de secciones tiene para el diseño de vigas y columnas. En el caso de miembros comprimidos con secciones esbeltas se considera la posibilidad de ocurrencia del pandeo local, para lo cual se define un factor de reducción Q que disminuye la tensión crítica con la cual se realiza la verificación. Si la sección de la columna es no esbelta sólo se consideran los estados límites de pandeo global.

Para el diseño de miembros flexionados las especificaciones ANSI/AISC 360-10 consideran que la plastificación de la sección se logra sólo en el caso de secciones compactas. Para los otros dos tipos de secciones, el momento nominal, M_n, es menor que el momento de plastificación de la sección, Mp, de modo de considerar la ocurrencia del pandeo local. Se considera que las secciones compactas pueden desarrollar una capacidad de rotación de 3 (esto es la rotación máxima es 3 veces la rotación de fluencia), antes de que se inicie en alguno de los elementos el pandeo local. Las secciones no compactas pueden desarrollar fluencia en forma parcial, dado que la ocurrencia del pandeo local no permite la formación de una rótula plástica. Por último, las secciones esbeltas no permiten el desarrollo de la fluencia en la sección porque el pandeo local ocurre primero.

Fig. 1-8. Clasificación de secciones de acero para definir la consideración del pandeo local en vigas y columnas.

En el caso de miembros de acero que forman parte de estructuras sismorresistentes las especificaciones ANSI/AISC 341-10 incluyen una clasificación de las secciones por ductilidad, con el objeto de controlar el pandeo local y asegurar que se desarrollan deformaciones plásticas. Para ello se definen dos valores límites para la relación anchura-espesor de los elementos componentes de las secciones para miembros con moderada ductilidad, λ_{md} , y alta ductilidad, λ_{hd} , (Tabla D1.1, ANSI/AISC 341-10). El reglamento requiere que los miembros diseñados para desarrollar ductilidad moderada cumplan la condición de que todos los elementos comprimidos de la sección tengan una relación anchura-espesor que no exceda el valor λ_{md} . En el caso de miembros diseñados para alta ductilidad, dicha relación no debe exceder el límite λ_{hd} (el cual es menor, esto es más estricto que el límite anterior). Esta situación se representa gráficamente en la Figura 1-9, donde se muestra, mediante un gráfico momento-rotación, el efecto del tipo de sección en la respuesta esperada para una viga I de acero. Los datos experimentales indican que las secciones que cumplen los requerimientos de alta ductilidad pueden desarrollar una rotación plástica de 0.04 rad o más, mientras que en las secciones compactas se puede alcanzar una rotación plástica de 0.02 rad, aproximadamente.

Si se analiza nuevamente el ejemplo de la Figura 1-7, pero considerando ahora el caso de un miembro a flexión con requerimientos de ductilidad, los límites para la relación anchura-espesor son:

Ala (elemento no rigidizado):

$$\lambda_{hd}=0.30\sqrt{\frac{E}{F_y}},\qquad \lambda_{md}=0.38\sqrt{\frac{E}{F_y}}$$

Alma (elemento rigidizado):

$$\begin{split} \lambda_{\rm hd} &= 2.45 \sqrt{\frac{E}{F_{\rm y}}} \left(1 - 0.93 C_{a} \right) \, {\rm si} \, {\rm C_{a}} \leq 0.125 \\ \lambda_{\rm hd} &= 0.77 \sqrt{\frac{E}{F_{\rm y}}} \left(1 - 2.93 C_{a} \right) \geq 1.49 \sqrt{\frac{E}{F_{\rm y}}} \\ &{\rm si} \, {\rm C_{a}} > 0.125 \end{split}$$

$$\lambda_{\rm md} = 3.76 \sqrt{\frac{E}{F_{\rm y}}} (1 - 2.75C_a) \, \text{si} \, \text{C}_{\rm a} \le 0.125$$
$$\lambda_{\rm hd} = 1.12 \sqrt{\frac{E}{F_{\rm y}}} (1 - 2.33C_a) \ge 1.49 \sqrt{\frac{E}{F_{\rm y}}}$$
$$\text{si} \, \text{C}_{\rm a} > 0.125$$

donde C_a es un factor que representa la relación entre la carga de compresión actuante en el miembro y la resistencia de diseño.

Fig. 1-9. Comportamiento flexional de una viga I en base al tipo de sección (efecto del pandeo local).

1.4.4 Efectos de segundo orden

Los efectos de segundo orden son aquellos inducidos por las cargas actuando en la configuración deformada de la estructura, es decir que se trata de un problema de no linealidad geométrica. En el caso particular de cargas gravitatorias, P, a medida que la estructura se deforma por la acción del sismo, las cargas gravitatorias inducen un momento adicional que es proporcional al desplazamiento lateral δ . A este caso particular de efecto de segundo orden se lo denomina efecto P-Delta

Para analizar la influencia del efecto P-Delta en la respuesta global de la estructura se presenta en la Figura 1-10 el caso de un sistema simple de un grado de libertad sometido a una fuerza lateral F, la cual origina un desplazamiento δ . Las cargas gravitatorias P también se desplazan generando un momento de vuelco que se suma al inducido por la fuerza F, de modo que en un instante dado M = F h + P δ . Este incremento del momento de vuelco es equivalente a la acción de una fuerza lateral adicional, igual a P δ / h, la cual reduce la resistencia lateral de la estructura. Adicionalmente, el efecto de P-Delta disminuye la rigidez lateral, la cual eventualmente puede tomar valores negativos en la zona de comportamiento inelástico.

Desplazamiento

Fig. 1-10. Influencia del efecto P-∆ en la respuesta global de la estructura.

Desde el punto de vista del diseño estructural, es necesario preguntarse cuáles son las consecuencias del efecto P-Delta. Como se deduce de la Figura 1-10, éste produce un aumento en los desplazamientos, dado que la rigidez real de la estructura disminuye, y un aumento de la resistencia requerida (solicitaciones). La mayoría de los códigos de diseño consideran algún índice o factor para cuantificar la importancia del efecto P-Delta. Usualmente se considera un índice de estabilidad que depende de las cargas gravitatorias, del corte basal y de los desplazamientos laterales. En el caso de las especificaciones *Minimum Design Loads for Buildings and Other Structures* (ASCE, 2010) se considera que el efecto P-Delta es despreciable cuando el índice de estabilidad, θ , evaluado en cada nivel de la construcción, cumple la siguiente condición:

$$\theta = \frac{P\Delta I_e}{VhC_d} \le 0.1 \tag{1-5}$$

donde P es la carga vertical total actuando en el nivel considerado (en la evaluación de P no es necesario considerar factores de carga mayores a 1.0), Δ es el desplazamiento relativo de piso, I_e es el factor de importancia, V es el corte en el nivel, h la altura del piso y C_d es el factor de amplificación de desplazamientos. El concepto y evaluación de Δ y C_d se presentan en el Capítulo 2.

Se dispone de diversos procedimientos para considerar en el análisis estructural el efecto P-Delta, los cuales presentan distinto grado de complejidad y precisión. Las especificaciones ANSI/AISC 360-10 incluyen un método simplificado que considera la amplificación de momentos obtenidos de dos análisis elásticos de primer orden. La mayoría de los programas de análisis estructural cuentan hoy con distintas opciones para considerar este efecto. Una de las alternativas más usadas consiste en calcular la rigidez global de la estructura incluyendo una matriz de rigidez geométrica. De esta forma es posible determinar sin iteraciones el aumento de solicitaciones y desplazamientos resultante del efecto P-Delta, tanto en análisis estáticos como dinámicos. Finalmente, otros métodos plantean el problema como un caso general de no linealidad geométrica aplicando procedimientos iterativos (Wilson, 2010).

1.4.5 Comportamiento sísmico de las estructuras de acero

El acero es el material más dúctil entre aquellos de uso estructural. Sin embargo, es un error grave considerar que esta propiedad inherente al material se traslada automáticamente al sistema estructural. Las investigaciones desarrolladas en los últimos 30 años han demostrado que para asegurar el comportamiento dúctil de las estructuras es necesario suministrar adecuada ductilidad no sólo a nivel del material, sino también a nivel seccional y de los miembros que componen el sistema (columnas, vigas, riostras, conexiones). Para ello se debe, en primer lugar, identificar y conocer las condiciones que pueden conducir a mecanismos de falla frágil y, luego, adoptar estrategias de diseño para obtener una respuesta estable y con adecuada capacidad de disipación de energía. El diseño y detalle de las conexiones entre los distintos componentes estructurales es un aspecto de fundamental importancia para alcanzar estos objetivos. Antes de 1988, en general, no se disponía de especificaciones reglamentarias para el adecuado detalle de estructuras sismorresistentes de acero (Bruneau et al., 1998). Afortunadamente esta situación se ha revertido y en la actualidad se cuenta con especificaciones que se consideran seguras y confiables.

En el caso de estructuras sismorresistentes, el control de los fenómenos de inestabilidad resulta más importante aún que en las estructuras comunes, dado que su ocurrencia degrada la respuesta en términos de resistencia y rigidez, disminuyendo así su capacidad de disipar energía. Las especificaciones de diseño incluyen requerimientos específicos al respecto, particularmente en aquellas zonas donde se espera que se desarrollen deformaciones plásticas (por ejemplos, rótulas plásticas en vigas, zonas de fluencia por tracción o corte, etc).

Los edificios con estructura de acero, han sido construidos desde hace muchas décadas, principalmente en países desarrollados económica y tecnológicamente. Los terremotos de Northridge, USA, ocurrido en 1994 (Magnitud Richter 6.8) y de Hyogo-ken Nanbu (Kobe), Japón, en 1995 (Magnitud Richter 7.2) que afectaron zonas de dos países que son considerados líderes en la ingeniería sismorresistente, representaron pruebas severas para las construcciones de acero (Bertero et al., 1994; Tremblay et al., 1996). En ambos terremotos no se registraron colapsos de edificios con estructura de acero y las primeras inspecciones realizadas inmediatamente después del sismo (usualmente desde el exterior del edificio) indicaron un adecuado comportamiento, sin daños observables a simple vista. Esta situación se consideró como un éxito de la ingeniería y de la industria de la construcción en acero. Sin embargo, los estudios más detallados que se realizaron posteriormente revelaron que un número importante de edificios, muchos de los cuales fueron diseñados con reglamentaciones modernas, se encontraban seriamente afectados. Varias semanas después de ocurrido el terremoto, equipos especializados realizaron inspecciones con el objeto de investigar la ocurrencia de desplazamientos laterales residuales de importancia. Para ello, se debieron remover los elementos arquitectónicos y la protección contra fuego que usualmente cubren la estructura de acero (ver Figura 1-11).

Los daños afectaron distintos tipos de estructuras de acero, pero los problemas más sorprendentes y serios se registraron en pórticos resistentes a momento (sin arriostramientos), donde se observó un inadecuado comportamiento de las conexiones, particularmente en los nudos viga-columna, con la ocurrencia de distintos tipos de falla por fractura de soldaduras y placas (ver Figuras 1-12 y 1-13).

Como resultado de los daños observados en el terremoto de Northridge, se implementó en Estados Unidos un programa de investigación analíticoexperimental de gran alcance, destinado a analizar las causas de las fallas relevadas y a proponer soluciones aplicables tanto al diseño de nuevas construcciones como a la reparación de las existentes. Este programa, denominado SAC (siglas surgen del nombre de las tres organizaciones norteamericanas que forman el consorcio: SEAOC, ATC y CUREE) comprendió tres etapas: (i) el estudio de las prácticas de diseño y constructivas previas al terremoto de Northridge, (ii) el análisis de las fallas y sus causas y (iii) el desarrollo de nuevos criterios de diseño y detalles para las conexiones.

Fig. 1-11.Edificio bajo inspección para observar los daños causados por el terremoto en las conexiones viga-columna (Earthquake Engineering Research Institute, Slides on the January 17, 1994,Northridge Earthquake, Set I:An Overview).

Fig. 1-12. Fractura en una placa de base de columna de una estructura de pórtico arriostrado (Earthquake Engineering Research Institute, Slides on the January 17, 1994, Northridge Earthquake, Set I:An Overview).

El programa SAC permitió obtener importantes resultados analíticos y experimentales, de modo que actualmente se dispone de valiosa información al respecto publicada por *Federal Emergency Managment Agency* (FEMA 2000a, 2000b, 2000c, 2000d, 2000e, 2000f). Esta información ha sido incorporada en las especificaciones sísmicas de AISC (AISC 2010a y AISC 2010c) y en recomendaciones de diseño (Miller, 2006). Para mayor información y acceso a las publicaciones consultar la página web: http://www.sacsteel.org.

Los resultados obtenidos del programa SAC indican que las causas que llevaron a la ocurrencia de las fallas observadas son múltiples. Entre las más importantes, puede mencionarse:

- El uso de electrodos inadecuados, que no califican para obtener valores de resiliencia requeridos actualmente. Los ensayos realizados sobre probetas obtenidas de edificios con daños por fractura mostraron valores muy reducidos de resiliencia (mediante ensayo de Charpy en probetas con muesca en V).
- La práctica constructiva de dejar elementos de respaldo (*steel backing*) que, si bien sirven durante el proceso de soldadura de cordones de penetración completa, generan problemas en la raíz de la soldadura (ver Figura 1-14)
- La presencia de defectos en la raíz de la soldadura, que no fueron detectados mediante ensayos de ultrasonido.
- El uso de prácticas constructivas no recomendadas, como el calentamiento excesivo de las piezas a soldar para aumentar la velocidad de deposición del material de soldadura,
- Otros efectos adversos, tales como deformaciones de corte excesivas en el panel nodal, efectos de velocidad de deformación (*strain rate*), efectos de interacción con losas de hormigón armado, etc.

Fig. 1-13. Fractura de la soldadura de penetración completa en una conexión de pórtico resistente a momento (Earthquake Engineering Research Institute,

Slides on the January 17, 1994, Northridge Earthquake, Set I:An Overview).

Los nuevos criterios de diseño y detalles constructivos para conexiones viga-columna se describen en el Capítulo 3.

También se han observado fallas frágiles por fractura y problemas de inestabilidad en pórticos arriostrados concéntricamente, que originan un comportamiento no dúctil de la estructura. En las Figuras 1-15, 1-16 y 1-17 se reproducen fotografías con ejemplos de estos tipos de fallas, observadas durante el terremoto de Hyogo-ken Nanbu (Kobe), Japón, en 1995.

Fig. 1-14. Detalle de la soldadura en el ala inferior de una viga.

Fig. 1-15. Fractura de una riostra en X en la sección neta (Naeim, 2001).

El terremoto de Tohoku, Japón, ocurrido el 11 de marzo de 2011 con una magnitud $M_W=9$, produjo daño en construcciones diversas, y particularmente en estructuras de acero. Las Figuras 1-18, 1-19 y 1-20 muestran algunos ejemplos de estos daños. Sin embargo, en la mayoría de los casos, los problemas observados corresponden a estructuras que fueron diseñadas y construidas hace varias décadas, es decir de acuerdo a reglamentos que no se consideran actualizados y segu-

ros. De modo que estos problemas no deben interpretarse como un fracaso de la ingeniería sísmica, sino por el contrario una demostración de que las estructuras modernas presentan un grado de seguridad adecuado.

Fig. 1-16. Daño severo en la viga y conexión de un pórtico con arriostramientos en V invertida (Naeim, 2001).

Fig. 1-17. Fractura en una conexión soldada (Naeim, 2001).

Fig. 1-18. Fractura de riostras en la zona de conexión (Midorikawa et al., 2012).

Fig. 1-19. Pandeo local en el extremo de una riostra de acero (Midorikawa et al., 2012).

Fig. 1-20. Distorsión del primer piso de una estructura aporticada (Midorikawa et al., 2012).

1.5 ESTRUCTURAS CON SECCIONES COM-PUESTAS

1.5.1 Aspectos generales

En el ámbito de la ingeniería civil, el término "construcción compuesta" se aplica, en general, para indicar el uso de dos o más materiales distintos, los cuales se combinan de manera tal que el material resultante presenta un mejor comportamiento que el de los componentes individuales. Sin embargo, el mismo término se usa frecuentemente para el caso particular de miembros construidos con acero estructural y hormigón. Con el mismo significado, se emplean también las denominaciones de "construcción mixta" o "construcción híbrida".

Los miembros estructurales de sección compuesta de acero y hormigón se han usado, en diversas formas, desde fines del siglo XIX. Esta combinación permite aprovechar en forma sinérgica las ventajas de ambos materiales, de modo de contrarrestar las desventajas de cada uno de ellos.

Las primeras aplicaciones, en puentes y en edificios, se realizaron con perfiles laminados o armados embebidos en hormigón, tanto para vigas como para columnas. El uso del sistema se fue extendiendo, principalmente en Norteamérica y Europa, lo cual impulsó el desarrollo de los primeros estudios analíticos y experimentales en distintas lugares con el objetivo de evaluar la resistencia y desarrollar procedimientos de diseño. Paralelamente, se implementaron distintos tipos de conectores de corte, los cuales permiten mejorar el comportamiento conjunto entre acero y hormigón (las primeras patentes comerciales se registraron en Estados Unidos de América en 1903 y 1926, Viest et al., 1997). Los desarrollos continuaron con aplicaciones de la construcción compuesta para losas, muros con perfiles de acero embebidos y, más recientemente, para muros con placas de acero rellenos de hormigón

En la práctica actual, es usual emplear miembros compuestos en todas aquellas aplicaciones en que se combina el acero estructural y el hormigón. El caso más simple es de las construcciones con estructura de acero y losas de hormigón, en las cuales se emplean vigas compuestas, según se explica más adelante. En otros casos, se usan miembros compuestos rellenos o embebidos, logrando así el aprovechamiento óptimo de ambos materiales.

La principal ventaja de la construcción compuesta radica en la adecuada combinación del acero y hormigón de modo de compensar la baja resistencia a tracción del hormigón y evitar o minimizar los problemas de inestabilidad del acero. El trabajo conjunto entre ambos materiales (comportamiento compuesto) permite aumentar no solo la resistencia de los miembros sino también su rigidez.

Además de las ventajas estructurales, se pueden obtener beneficios arquitectónicos y funcionales, por ejemplo, losas de espesor reducido, vanos de vigas más largos, etc. Adicionalmente, el hormigón contribuye a mejorar la resistencia al fuego de los miembros compuestos.

Otra ventaja interesante de la construcción con miembros compuestos es que permite agilizar el proceso constructivo, en comparación con una construcción de hormigón convencional. Así por ejemplo, en el caso de losas compuestas de hormigón con chapas de acero se puede evitar el uso de encofrados y apuntalamiento. Si además se usan vigas y columnas compuestas se logran ventajas adicionales, como se ilustra en forma simplificada en el ejemplo de la Figura 1.21 para una construcción de 4 niveles. Inicialmente se comienza con el montaje de la estructura de acero, vigas y columnas en el nivel inferior, Figura 1-21 (a). Luego, se continua con el montaje de los miembros de acero en los niveles intermedios, se preparan las losas compuestas en los niveles 1 y 2, y se hormigonan las columnas del primer nivel, Figura 1-21 (b). En etapas sucesivas, Figura 1-21 (c) se termina el montaje de la estructura de acero y se completan los miembros compuestos según el proyecto. Durante el proceso constructivo, la estructura de acero debe resistir las distintas acciones sin la colaboración del hormigón o con una colaboración parcial de aquellos miembros ya terminados.

Fig. 1-21. Esquema del proceso constructivo en etapas de una estructura con miembros compuestos, el cual permite reducir significativamente el tiempo de ejecución de la obra.

1.5.2 Conectores de corte

El desarrollo del comportamiento compuesto requiere que los dos materiales trabajen en forma integral mediante elementos que los vinculen o conecten, dado que la adherencia entre el hormigón y los elementos de acero con superficie lisa (perfiles, chapas, etc.) es prácticamente nula. Es por ello que se han desarrollado e implementado distintos tipos de conectores de corte, los cuales usualmente se sueldan a los elementos de acero que están en contacto con el hormigón.

La Figura 1-22 (a) muestra distintos tipos de conectores, como pernos, trozos de perfiles ángulo o perfiles U, planchuelas, etc. Otra alternativa es el uso de conectores continuos, como los indicados en las Figuras 1-22 (b) y (c), formados por una barra de acero de refuerzo la cual se dobla en zig-zag o una planchuela de acero con cortes en la parte superior para lograr la transferencia de esfuerzos entre ambos materiales. Estos son algunos de los tipos más usuales, si bien en la práctica se aplican una amplia variedad de alternativas, algunas de las cuales están protegidas por patentes comerciales.

Uno de los conectores más usados son los pernos tipo Nelson (<u>http://www.pernosnelson.com/</u>) que representan una adecuada solución estructural y además son muy convenientes desde el punto de vista constructivo. Estos pernos se sueldan utilizando una pistola especial en la que el electrodo es el mismo perno, de modo que la colocación de los mismos es muy rápida, Figura 1-23.

Fig. 1-22. Ejemplos de conectores de corte.

Fig. 1-23. Colocación de pernos soldados sobre el ala de una viga de acero.

En cada caso, los conectores deben verificarse según la función estructural que desempeñan. Los detalles sobre el comportamiento estructural y métodos de cálculo de los conectores de corte no se presentan en este trabajo y pueden encontrarse en la bibliografía sobre el tema.

1.5.3 Tipos de miembros compuestos

Los miembros compuestos combinan, en distintas formas, componentes de acero, tales como perfiles laminados, tubos o elementos armados, con hormigón y armaduras de refuerzo (barras nervuradas de acero dispuestas longitudinal y trasversalmente). Los principales tipos de miembros compuestos son:

- Miembros compuestos embebidos
- Miembros compuestos rellenos
- Vigas compuestas con conectores de corte

Losas compuestas

Los miembros embebidos son aquellos en los que uno o más perfiles de acero se rodean de hormigón armado, como se indica en la Figura 1-24. El hormigón, además de su función estructural, permite aumentar la resistencia al fuego del miembro compuesto. Este tipo de miembros se emplea usualmente para columnas, si bien pueden usarse también para vigas y muros.

Fig. 1-24. Ejemplos de miembros compuestos embebidos, (a) sin conectores y (b) con conectore soldados al perfil.

Los miembros compuestos rellenos están formados por un elemento tubular de acero que se rellena con hormigón (ver Figura 1-25). Este tipo de miembros se emplea usualmente para columnas, con el objeto de aprovechar el hormigón confinado dentro del tubo, que aumenta significativamente la resistencia a compresión. Ello se debe al incremento del área de material resistente y además a que se reduce el efecto de pandeo local en las paredes del tubo. La resistencia a compresión de los miembros rellenos puede aumentarse aún más si se disponen en el interior del tubo armaduras de refuerzo, como se indica en la Figura 1-26. Los miembros compuestos rellenos también pueden usarse para muros.

Las vigas compuestas con conectores de corte son miembros que surgen de la combinación de una viga de acero (usualmente secciones I o Ul) y de una losa de hormigón. La Figura 1-27 muestra un esquema de una sección típica, donde se observa que la acción compuesta entre la losa y la viga de acero se logra mediante pernos soldados al ala superior de la viga. Dichos pernos deben resistir los esfuerzos cortantes que resultan de la acción compuesta entre ambas partes de la sección. En este ejemplo, se usan pernos soldados como conectores de corte, si bien puede emplearse cualquiera de las alternativas indicadas en la sección previa. Este tipo de vigas compuestas es muy utilizado en edificios con pórticos de acero para reducir la sección de las vigas y, por ende, los costos de la construcción.

Fig. 1-25. Secciones típicas de miembros compuestos rellenos.

Fig. 1-26. Sección de un miembro compuesto relleno con armadura longitudinal de refuerzo.

Las losas compuestas están formadas por una capa de hormigón de espesor variable que se dispone por encima de una chapa plegada de acero, como se indica en la Figura 1-28. Esta chapa presenta en su superficie muescas o indentaciones, las cuales sirven como conectores mecánicos para transferir esfuerzos rasantes entre el hormigón y el acero (la adherencia entre ambos materiales es prácticamente nula). Es por ello que la chapa plegada no solo sirve como encofrado para la colocación del hormigón in situ, sino que provee la resistencia a tracción en la parte inferior de la losa (es decir que cumple la función de armadura de refuerzo inferior). La malla de acero electrosoldada que se observa en la Figura 1-28 se usa principalmente para el control de la fisuración del hormigón. Eventualmente se puede colocar armadura de refuerzo superior para resistir momentos negativos en el caso de losas continuas. Este tipo de losa se considera como una losa armada en una dirección (la dirección paralela al plegado de la chapa colaborante¹).

Fig. 1-27. Esquema de una viga compuesta con conectores de corte.

La chapa plegada usualmente se coloca por encima de una viga de acero y ambos elementos se vinculan mediante conectores soldados (como se ilustra en la Figura 1-28). Estos conectores cumplen la función de mantener en posición a las chapas de acero durante la colocación y vibrado del hormigón y de vincular la losa a la estructura principal para asegurar la transferencia de acciones laterales, como viento y sismo (efecto de diafragma). Para mayor información sobre este tipo de losas el lector puede consultar los documentos elaborados por el *Steel Deck Institute* (http://www.sdi.org/).

Fig. 1-28. Losa compuesta con chapa colaborante de acero (http://www.alcor.com.ar/)

¹ La palabra "colaborante" no está definida en el Diccionario de la Real Academia Española, si bien se emplea frecuentemente en la bibliografía y en los catálogos de los fabricantes. Es por ello que usa en esta publicación.

Las losas compuestas con chapa colaborante, por sus ventajas estructurales, constructivas y económicas, son de uso común en muchos países, particularmente cuando se busca reducir los tiempos de construcción. Su aplicación resulta especialmente conveniente cuando la losa compuesta se apoya sobre vigas de acero. En este caso, se puede vincular la losa con la viga para lograr una viga compuesta con conectores. De esta forma se logra reducir las dimensiones de la viga, con la consiguiente ventaja económica. Reglamentariamente te requiere que el espesor de la capa de hormigón por encima de la chapa de acero sea de 50 mm como mínimo y que la altura nominal del nervio no exceda de 75 mm. La chapa debe vincularse a la viga de acero mediante conectores, soldaduras de tapón u otro dispositivo equivalente, los cuales deben ubicarse con una separación máxima de 460 mm.

La Figura 1-29 representa el esquema estructural de una losa compuesta con chapa colaborante que apoya en un entramado de vigas de acero. Es importante observar que la losa compuesta apoya en las vigas secundarias (dispuesta en forma perpendicular a los nervios de la chapa). Estas vigas usualmente se colocan con una separación entre 2 y 3 m como máximo, con lo cual se evita el apuntalamiento durante la colocación del hormigón fresco.

Fig. 1-29. Losa compuesta con chapa colaborante que apoya sobre vigas de acero.

En la dirección en que los nervios están dispuestos perpendicularmente a la viga, ver Corte A-A, Figura 1-30, el contacto entre la viga y la losa es discontinuo, debido a la forma del plegado. En este caso el reglamento ANSI/AISC 360-10 indica que, a los efectos del cálculo de la viga compuesta, se debe despreciar el hormigón ubicado por debajo del borde superior de la chapa colaborante. En la dirección en que los nervios están paralelos a la viga, ver Corte B-B, Figura 1-30, se considera toda la sección de hormigón en el cálculo de la viga compuesta. En este último caso las chapas cola-

borantes deben disponerse adecuadamente para que el nervio apoye sobre la viga de acero. Esto se puede lograr mediante varias alternativas, dos de las cuales se muestran en la Figura 1-31. En el caso (a) se hace coincidir un nervio de la chapa plegada con la viga, mientras que en el caso (b), las chapas se cortan de modo tal de formar el nervio sobre la viga. En ambos casos se disponen los conectores (u otros elementos equivalentes) para asegurar la acción compuesta entre la losa y la viga.

Fig. 1-30. Secciones de viga compuesta, Corte A-A: nervios perpendiculares a la viga, y Corte B-B: nervios paralelos a la viga.

Fig. 1-31. Distorsión del primer piso de una (a) chapa continua sobre la viga, (b) chapa interrumpida.

El uso de vigas compuestas con pernos de corte es usual no solo para estructuras de edificios sino también en puentes. La Figura 1-32 muestra una imagen correspondiente a este último caso.

Fig. 1-32. Imagen de una viga de acero con pernos de corte para construcción de la viga compuesta de un puente.

1.5.4 Evaluación de la resistencia de secciones compuestas

El diseño de secciones compuestas requiere de la consideración del comportamiento conjunto de ambos materiales, esto es acero y hormigón. Desde el punto de vista reglamentario esta situación puede resultar en conflictos, dado que usualmente cada material cuenta con su propia normativa. Para solucionar este inconveniente, el ANSI/AISC 360-10 aplica criterios para determinar la resistencia seccional de los miembros compuesto que son compatibles con los del reglamento ACI 318 *Building Code Requirements for Structural Concrete*.

La resistencia nominal de las secciones compuestas, acorde al reglamento ANSI/AISC 360-10, puede determinarse según dos procedimientos.: el método de las tensiones plásticas y el método de la compatibilidad de deformaciones.

El método de las tensiones plásticas asume que los componentes de acero que integran la sección alcanzan la resistencia de fluencia F_y , en tracción o compresión según corresponda, mientras que el hormigón alcanza la tensión 0.85 f'_c (siendo f'_c la resistencia especificada a compresión). En el caso de secciones compuestas formadas por tubos redondos rellenos de hormigón el reglamento permite considerar una tensión de 0.95 f'_c debido al aumento de resistencia a compresión por confinamiento.

El método de la compatibilidad de deformaciones asume una distribución lineal de deformaciones en la sección (hipótesis de Bernoulli-Navier), con una deformación máxima del hormigón de 0.003. Las leyes constitutivas de ambos materiales (curvas tensióndeformación) deben obtenerse de ensayos o de información disponible en la literatura técnica. Este método se usa en el caso de secciones irregulares o cuando el acero no presenta comportamiento elasto-plástico. Para mayor información puede consultarse la Guía de diseño No 6 (Griffis, 1992) y el reglamento ACI 318-11.

Como se mencionó previamente, en el caso de miembros compuestos rellenos, la resistencia a compresión aumenta no solo por el incremento de la sección resistente sino también porque se modifica el comportamiento ante pandeo local. La Figura 1-33 muestra las deformadas de pandeo para miembros compuestos rellenos de sección rectangular y circular. Se observa en esta figura que la presencia del relleno de hormigón impide que la sección se deforme hacia adentro del tubo. Este hecho se representa también en la Figura 1-34, donde se grafica esquemáticamente la vista lateral de las deformadas de pandeo local para el caso de un tubo sin relleno y de un miembro compuesto relleno de hormigón. De modo que el pandeo local del tubo relleno se produce con deformadas de pandeo que requieren mayor energía, y por ende presentan una mayor carga crítica.

En el caso de vigas compuestas con conectores de cortes, un aspecto relevante en el cálculo estructural es el ancho efectivo de la sección de hormigón. Cuando la sección resiste solicitaciones de flexión, se desarrollan tensiones axiales que varían según la distancia al eje neutro. Sin embargo, la losa de hormigón tiene un ancho real que es muy superior al ancho de la viga de acero, por lo cual las tensiones reales que se generan en la losa no son uniformes a lo largo de una fibra cuya distancia al eje neutro es constante.

Fig. 1-332. Esquemas de la deformación por pandeo en miembros compuestos rellenos de sección rectangular y circular.

Fig. 1-34. Vista lateral de la deformada por pandeo local de (a) tubo sin relleno y (b) miembro compuesto relleno de hormigón.

Es por ello que se introduce el concepto de ancho efectivo, el cual puede definirse como el ancho equivalente de la losa de hormigón, suponiendo una distribución uniforme de tensiones, que produce la misma respuesta que la sección real con tensiones no uniformes. La reglamentación ANSI/AISC 360-10 indica que el ancho efectivo es la suma delos anchos efectivos a cada lado del eje de la viga, cada uno de los cuales no debe exceder los siguientes valores:

- 1/8 de la luz de la viga, medida desde los centros de los apoyos,
- ¹/₂ de la distancia al eje de la viga adyacente, o
- la distancia al borde de la losa.

Durante el proceso constructivo de los miembros compuesto, es usual que las vigas y columnas de acero resistan distinto tipos de acciones hasta tanto se complete la estructura y los miembros compuestos desarrollen su capacidad resistente. En estos casos, es importante considerar los efectos de las cargas actuantes en la estructura de acero durante la fase de construcción sin incluir la acción compuesta (dado que el hormigón aún no ha endurecido).

En esta sección se han presentado algunos aspectos básicos del diseño de estructuras con miembros de sección compuesta. El estudio en profundidad del tema escapa a los alcance de este texto, razón por la cual se recomienda al lector interesado consultar la bibliografía indicada en la Sección 1.1.

Capítulo 2 Aspectos generales del diseño sismorresistente

2.1 EL SISMO COMO ACCIÓN DE DISEÑO

Los sismos son eventos con baja probabilidad de ocurrencia y sus consecuencias pueden ser tremendas en términos de destrucción y del sufrimiento que provocan. Por estas razones el diseño de estructuras sismorresistentes presenta particularidades que lo distinguen del diseño para otro tipo de acciones como cargas gravitatorias o viento.

El fenómeno sísmico es un problema netamente dinámico, si bien los primeros métodos para su consideración se basaron en conceptos estáticos. Es así que surgió el método de las fuerzas estáticas equivalentes, que aún hoy se aplica para estructuras relativamente simples (la mayoría de los códigos permiten su aplicación para construcciones de baja y mediana altura y de configuración aproximadamente regular). En este método, el efecto vibratorio del sismo se reemplaza por fuerzas laterales que, en general, siguen una distribución creciente con la altura. El corte basal sísmico se determina a partir de un coeficiente sísmico (igual a la aceleración horizontal dividida la aceleración de la gravedad, g) multiplicado por el peso total de la construcción, incluyendo las sobrecargas de uso. El desarrollo y la difusión de las computadoras personales y de los programas de análisis estructural han permitido una generalizada aplicación de métodos dinámicos para considerar la acción sísmica. En estos métodos, y dependiendo del tipo de análisis a realizar, el sismo se cuantifica a través de un espectro de aceleraciones o mediante una serie de registros de aceleración (acelerogramas). Estos últimos representan la variación de la aceleración del terreno en función del tiempo. Los registros de aceleración se obtienen de mediciones de sismos reales² o bien se generan artificialmente mediante programas computacionales para cumplir ciertos requisitos.

Cualquiera sea el método aplicado, se consideran en general cuatro aspectos fundamentales para cuantificar la acción sísmica, a saber: (i) sismicidad propia del lugar, (ii) características del suelo de fundación, (iii) destino o importancia de la construcción y (iv) características principales de la respuesta estructural, vinculadas principalmente a su ductilidad y sobrerresistencia. Los dos primeros aspectos se definen a través de un espectro de diseño, normalmente en términos de aceleraciones horizontales. La importancia de la construcción se cuantifica a través de un factor que mayora la demanda sísmica para obras de infraestructura pública, edificios con alta ocupación, etc. El comportamiento estructural se representa mediante un factor de modificación de respuesta, R, el cual se ha calibrado a partir de resultados experimentales y analíticos obtenidos para distintos tipos de estructuras; sus implicancias en el diseño se indican posteriormente en este capítulo.

Es importante mencionar que usualmente la acción sísmica de diseño se define a partir de aceleraciones (o del coeficiente sísmico para el método estático), razón por la cual los métodos que utilizan este criterio se denominan "métodos de diseño basados en fuerza". Este es un criterio tradicional que se utiliza desde los comienzos de la ingeniería sísmica. Sin embargo, en las últimas décadas, investigadores y diseñadores de distintos países han comenzado a desarrollar una nueva definición de la acción sísmica, considerando los desplazamientos laterales como variable principal de diseño (Priestley et al, 2007). Es así que han surgido distintos "métodos de diseño basado en desplazamiento", los cuales han madurado en su formulación e implementación, de modo que es muy factible que en un futuro cercano se incorporen paulatinamente a los códigos de diseño.

El concepto de espectro es de gran importancia para definir y cuantificar la acción sísmica; es por ello que se presentan a continuación aspectos básicos sobre los espectros de respuesta y de diseño.

2.1.1 Espectros de respuesta

Se han definido diversos parámetros e indicadores para cuantificar los terremotos y sus efectos. Desde el punto de vista estructural, la aceleración es uno de los parámetros más importante para el diseño sismorresistente, más precisamente a través de los espectros de aceleración (ver Figura 2-1). A través de ellos, se define la amenaza sísmica de una zona o región a los efectos del diseño sismorresistente. En forma general, puede definirse espectro como un gráfico de la respuesta máxima (expresada en términos de desplazamiento, velocidad, aceleración, o cualquier otro parámetro de interés) que produce una acción dinámica determinada en una estructura u oscilador de un grado de libertad. En estos gráficos, se representa en abscisas el periodo propio de la estructura (o la frecuencia) y en ordenadas la respuesta máxima calculada para distintos factores de

² El primer registro de aceleración de un sismo se obtuvo en 1933 en Long Beach, California, y en la actualidad se dispone de bases de datos con numerosos registros, los cuales pueden descargarse, por ejemplo, de: <u>http://db.cosmos-eq.org/scripts/earthquakes.plx</u>, o <u>http://peer.berkeley.edu/smcat</u>

amortiguamiento ξ.

El espectro de respuesta elástica representa el máximo de un parámetro de respuesta (aceleración, desplazamiento, etc) para osciladores simples de un grado de libertad con un periodo de vibración T y un amortiguamiento relativo ξ para un terremoto dado. En la Figura 2-1 se presenta el gráfico correspondiente a un espectro de aceleración.

El concepto de los espectros comenzó a gestarse gracias a una idea Kyoji Suyehiro, Director del Instituto de Investigaciones de la Universidad de Tokyo, quien en 1920 ideó un instrumento de medición formado por 6 péndulos con diferentes periodos de vibración, con el objeto de registrar la respuesta de los mismos ante la ocurrencia de un terremoto. Unos años después, Hugo Benioff publicó un artículo en el que proponía un instrumento similar al de Suyehiro, destinado a medir el desplazamiento registrado por diferentes péndulos, con los cuales se podía determinar el valor máximo de respuesta y construir una curva (espectro de desplazamiento elástico) cuya área sería un parámetro indicador de la destructividad del terremoto. Maurice Biot, en el Instituto Tecnológico de California, fue quien propuso formalmente la idea de espectros de respuesta elástica; luego Housner, Newmark y muchos otros investigadores desarrollaron e implementaron este concepto en criterios de aplicación práctica.

Fig. 2-1. Espectro elástico de respuesta, en términos de aceleración, correspondiente al terremoto de Turquía, 17/8/1999, registro YPT.

2.1.2 Espectros de diseño

Debido a que los espectros de respuesta representan el efecto de un solo registro de aceleración, no pueden usarse para el diseño. Por esta razón, los reglamentos sismorresistentes utilizan espectros de diseño. Éstos presentan dos características principales: (i) consideran la peligrosidad sísmica de una zona o región y (ii) son curvas suavizadas, es decir, no presentan las variaciones bruscas propias de los espectros de respuesta.

La obtención de las respuestas espectrales, como parte del análisis de amenaza sísmica, puede realizarse mediante procedimientos probabilísticos o determinísticos, según lo que resulte más conveniente en cada caso (Maguire, 2004; Reiter, 1990).

Desde hace más de una década, se ha desarrollado en Estados Unidos un procedimiento que permite definir los espectros de diseño a partir de lo que se denomina terremoto máximo considerado (MEC, maximum considered earthquake). Éste no debe interpretarse como el máximo terremoto que puede ocurrir en una región, sino como el máximo nivel de sacudimiento que se considera razonable para el diseño de estructuras (Leyendecker et al., 2000). Se describe a continuación, en términos generales, el criterio que adoptan las especificaciones ASCE/SEI 7-10, Minimum Design Loads for Buildings and Other Structures (ASCE, 2010) para definir el espectro de diseño. Este reglamento considera para casos usuales un sismo definido como terremoto máximo considerado con probabilidad de colapso uniforme, MCE_R (risk-targered máximum considered earrhquake). Este concepto fue introducido en la edición del año 2010 de mencionado reglamento para considerar que la probabilidad de colapso estructural presenta incertidumbres. Anteriormente, los valores de movimiento de suelo (ground motion values) se definían bajo la condición de "amenaza uniforme" (uniform hazard), sin considerar las incertidumbres en la capacidad estructural. Es por ello que en la edición 2010 se modificaron los parámetros de movimiento de suelo de manera que la probabilidad de colapso esperada asociada a los espectros resultantes sea uniforme (para mayor información sobre este tema consultar Luco et al., 2007).

El terremoto MCE_R se determina asumiendo una probabilidad de excedencia del 2% en 50 años (equivalente a un periodo de retorno³ de 2475 años) y se caracteriza mediante tres parámetros principales:

- La aceleración espectral para periodos cortos (T=0.2s), S_S.
- La aceleración espectral para un periodo T=1.0s, S₁.
- El periodo de transición para periodos largos, T_L (ver Figura 2-2).

Estos parámetros se obtienen de mapas disponibles para todo el país, y corresponden a un sitio clase B. Actualmente, se puede acceder a los valores de los parámetros S_S y S_1 para calcular el espectro compatible con ASCE/SEI 7-10 en forma electrónica a través del sitio web el *United States Geological Survey's*, <u>http://earthquake.usgs.gov/hazards/designmaps/</u>, no solo para Estados Unidos sino también a nivel mundial

³ El periodo de retorno T_R (o intervalo de recurrencia) se define como la inversa de la probabilidad de excedencia anual, p_a , de modo que $T_R=1/p_a$. Es usual, sin embargo, indicar la probabilidad de excedencia, p_t , durante un cierto periodo de tiempo t (por ejemplo: 50 años). En este caso, puede demostrarse que $T_R = -t / ln(1-p_t)$, (Reiter, 1990).

(mediante *Worldwide Seismic Design Maps Application*). La clasificación del sitio se realiza a partir de las propiedades del suelo (velocidad promedio de las ondas de corte, resistencia promedio a la penetración o resistencia a corte no drenada promedio) y para ello se consideran seis categorías, de la A a la F.

El espectro de diseño se determina considerando una reducción de las aceleraciones espectrales de referencia para el terremoto máximo considerado, MCE_R , de modo que:

$$S_{DS} = 2/3 F_a S_S$$

 $S_{D1} = 2/3 F_v S_1$ (2-1)

donde el factor 2/3 representa un "margen sísmico" para transformar el espectro MCE, que corresponde a un nivel de colapso, en otro a nivel de diseño. Como consecuencias de dividir por 2/3, se obtiene un margen uniforme contra el colapso, pero no una probabilidad de ocurrencia uniforme de los espectros obtenidos para distintos sitios (Leyendecker et al., 2000). Luco et al. (2007) explican que el factor 2/3 representa un modificación en el objetivo de desempeño considerado por el reglamento que cambió del nivel de "seguridad de vida" (*life safety*) a "prevención del colapso" (*collapse prevention*)

Las modificaciones indicadas de los parámetros de referencia S_s y S_1 se representan esquemáticamente en la Figura 2-2 mediante flechas. Debe notarse, sin embargo, que en ciertos casos los parámetros de diseño pueden ser mayores que los del espectro MCE cuando los factores de sitio F_a o F_v son mayores de 1.5 (lo cual puede ocurrir en suelos blandos).

Fig. 2-2. Espectro de diseño considerado por las especificaciones ASCE/SEI 7-10.

Para sitios cuya clase difiere de la B es necesario modificar la respuesta espectral, de modo de considerar el efecto del suelo, que afecta tanto los valores de aceleración como la forma del espectro. Esta modificación se logra mediante dos coeficientes de sitio, F_a y F_v , que multiplican a las aceleraciones espectrales S_S y S_1 . Los coeficientes F_a y F_v se encuentran tabulados y sus valores dependen de la clase de sitio y de los niveles de aceleración S_S y S_1 .

Finalmente, para obtener el espectro completo, que consta de cuatro ramas (ver Figura 2-2) se determinan los periodos de transición T_0 y T_s mediante las siguientes expresiones:

$$T_{O} = 0.2 S_{D1} / S_{DS}$$

$$T_{S} = S_{D1} / S_{DS}$$
 (2-2)

En la Figura 2-3 se presenta, a modo de ejemplo, dos típicos espectros de aceleración para diseño correspondientes a sitios clase B y E. Además se incluyen en esa figura (en línea de trazo) los espectros de desplazamientos deducidos a partir de los de aceleración⁴.

Es muy importante aclarar que las aceleraciones especificadas mediante los espectros de diseño de los códigos para cuantificar la acción sísmica no representan necesariamente los máximos que podrían ocurrir en esa zona o región. Más bien representan un nivel de movimiento sísmico que se considera aceptable a los efectos del diseño (AISC, 2006). La aplicación de las especificaciones reglamentarias (por ejemplo AN-SI/AISC 341-10 y 360-10) asegura que la estructura presenta una adecuada ductilidad para evitar el colapso ante la ocurrencia de un sismo severo.

Fig. 2-3. Ejemplos de espectros de aceleración para diseño según ASCE/SEI 7-10 y los espectros de desplazamiento calculados a partir de los primeros.

2.1.3 Acción vertical del sismo

Los espectros descriptos previamente se utilizan para definir la acción sísmica horizontal. Los reglamentos de diseño, normalmente, incluyen también requerimientos para considerar el efecto de la acción sísmica vertical. Esta consideración se debe a que el movimiento del suelo, resultante de la propagación de las ondas

 $^{^4}$ Recordar que los valores de desplazamiento espectral, S_D, pueden derivarse de la aceleración espectral (estrictamente es la seudo-aceleración), S_A, mediante la rela-

sísmicas, presenta también una componente en la dirección vertical. En el caso de las normas ASCE/SEI 7-10 (ASCE, 2010) se considera una aceleración espectral constante (que no es función del periodo) igual a 0.2 S_{DS}. La aceleración así definida se considera que actúa sobre la masa vinculada a las cargas permanentes, de modo que se tiene un efecto vertical igual a ± 0.2 S_{DS} D (donde D representa la carga permanente o muerta).

El efecto de la acción vertical del sismo debe considerarse como parte de la acción sísmica total E cuando se plantean las combinaciones de carga requeridas por el reglamento. En algunos casos especiales se permite omitir la consideración de la acción vertical del sismo, por ejemplo cuando $S_{\rm DS} \leq 0.125$ o cuando se determina la demanda en fundaciones.

2.2 DISEÑO POR CAPACIDAD

El método de diseño por capacidad se desarrolló originalmente en Nueva Zelanda para estructuras de hormigón armado. En la actualidad, es aceptado internacionalmente y sus principios se aplican también al diseño de estructuras de acero.

El diseño por capacidad se basa en la formulación de una jerarquía en la resistencia de los componentes que componen el sistema estructural para permitir la formación de un mecanismo de deformación plástica (o mecanismo de colapso); se evita así la ocurrencia de fallas frágiles. Para ello, se seleccionan ciertos componentes o zonas de la estructura sismorresistente, los cuales son diseñados y detallados para disipar energía en forma dúctil y estable. En estas zonas críticas, denominadas comúnmente "rótulas plásticas", el sismo induce deformaciones plásticas por flexión y se evitan otros mecanismos de falla mediante un incremento de la resistencia asignada (por ejemplo fallas de corte en los miembros de hormigón armado o problemas de pandeo local en secciones de acero). Todos los demás componentes se protegen de la posibilidad de falla asignando una resistencia mayor que la correspondiente al desarrollo de la máxima resistencia esperada en las potenciales regiones de plastificación (Paulay y Priestley, 1992).

En el caso de pórticos, la rótula plástica se asocia a una zona de disipación de energía por flexión, pero el concepto puede ampliarse a otras estructuras con zonas donde se produce fluencia por corte, tracción, traccióncompresión, o incluso a dispositivos especialmente diseñados como disipadores de energía. De esta forma, el diseño por capacidad permite contrarrestar las incertidumbres existentes para definir la demanda sísmica y asegura que la estructura responda en forma estable y con adecuada capacidad de disipación de energía.

Las especificaciones ANSI/AISC 341-10 incorporan los conceptos del diseño por capacidad para la verificación de ciertos componentes, por ejemplo columnas, considerando las solicitaciones inducidas cuando se desarrolla el mecanismo de deformación plástica. En otras palabras, esos componentes no se diseñan para resistir las solicitaciones inducidas por la acción sísmica de diseño sino las correspondientes al nivel de resistencia última de la estructura. Para ello se define un factor de sobrerresistencia del sistema estructural, Ω_0 . Este aspecto se explica con más detalle en secciones subsiguientes de este capítulo.

2.3 FILOSOFÍA DEL DISEÑO SISMORRESIS-TENTE

2.3.1 Criterio general

Los códigos de diseño estructural usualmente indican el nivel general de protección que debe esperarse de ellos. Para las estructuras sismorresistentes la mayoría de los códigos establece requerimientos mínimos para asegurar la protección de la vida humana (esto es, evitar el colapso parcial o total) pero sin controlar el daño que puede resultar de la acción sísmica.

Las estructuras sismorresistentes, salvo casos especiales, se diseñan para responder en rango inelástico, de modo de desarrollar ductilidad y disipar energía durante la ocurrencia de un terremoto severo. Es por ello que las fuerzas o aceleraciones obtenidas a partir del espectro de diseño (espectro elástico) son reducidas mediante un factor de modificación de respuesta, R (cuya evaluación se discute en detalle en la sección siguiente). De esta forma el espectro de diseño elástico se transforma, a través del factor R, en un espectro de diseño inelástico.

El ingeniero estructural debe comprender adecuadamente el criterio de diseño sismorresistente a los efectos de aplicar correctamente las especificaciones reglamentarias. Este criterio difiere significativamente del aplicado para otros estados de carga, por ejemplo, para acciones laterales por viento, donde la estructura se diseña con el objetivo de permanecer esencialmente en rango elástico. La razón principal de esta diferencia es de orden económico, a los efectos de que los costos de construcción sean aceptables.

Es importante resaltar que la disipación de energía y el comportamiento dúctil de la estructura bajo la acción sísmica solo puede lograrse si los miembros que componen la misma son adecuadamente detallados (para evitar fallas de tipo frágil). Además, el desarrollo de la ductilidad implica la ocurrencia de daño estructural, el cual resulta de la fluencia del acero y eventualmente de problemas de inestabilidad como el pandeo local. El daño que produce el terremoto tiene un costo de reparación, pudiendo ser significativo según el tipo y la cantidad de componentes afectados, las técnicas de reparación requeridas, etc.

2.3.2 Factor de modificación de respuesta R

El concepto del factor de modificación de respuesta se introdujo en la década de 1960, fundamentalmente a

través de las investigaciones realizadas por Veletsos y Newmark (1960) y Veletsos et al (1965). A partir de los resultados obtenidos del análisis dinámico de estructuras simples con comportamiento elasto-plástico, se propuso que el espectro inelástico (para diseño) podía obtenerse con cierta aproximación a partir de un espectro elástico. De esta forma se podía reducir la demanda sísmica de diseño (determinada a partir de un espectro elástico) para considerar la capacidad de disipación de energía de la estructura por comportamiento no lineal. Para ello se aplicó, como variable principal, el concepto de ductilidad de desplazamiento, µ, definida como la relación entre el desplazamiento máximo y el desplazamiento de fluencia, y se aplicaron consideraciones simplificadas deducidas de 1a observación de los resultados obtenidos del análisis dinámico.

En primer lugar se observó que en el rango de periodos largos, el desplazamiento máximo en rango no lineal es similar al desplazamiento máximo del sistema elástico (ver Figura 2-4), situación que se puede expresar como "criterio de igual desplazamiento" (algunos autores utilizan el término "principio" en lugar de criterio o regla, lo cual sería incorrecto dado que es observación deducida a partir valores promedios obtenidos de resultados de análisis dinámicos). A partir de esta observación se deduce que el factor de reducción es igual a la ductilidad del sistema, $R = V_e / V_y = \mu$ (donde V_e es la fuerza sísmica en el sistema elástico, V_y la fuerza de fluencia en la estructura no lineal y $\mu = \delta_m/\delta_y$ es la ductilidad definida como la relación entre el desplazamiento máximo y el desplazamiento de fluencia).

Fig. 2-4. Regla o concepto de igual desplazamiento entre un sistema elástico y otro elasto-plástico.

Para el caso de estructuras con periodo de vibración bajos se concluyó que, aproximadamente, la energía en ambos sistemas era equivalente, como se ilustra esquemáticamente en la Figura 2-5, lo cual puede expresarse como "critierio o regla de igual energía". A partir de igualar el área bajo la curva de comportamiento elástico y elasto-plástico se puede deducir que

 $\mathbf{R} = \sqrt{2\mu - 1}$

Finalmente, para el caso de periodos intermedios se observó un comportamiento más complejo y se propusieron algunos procedimientos simplificados para la consideración de este caso. Sin embargo, las reglas de igual desplazamiento e igual energía representaron criterios importantes que han influenciado significativamente el diseño sismorresistente. A partir de las investigaciones de Veletsos, Newmark y sus colaboradores, muchos otros investigadores profundizaron los estudios sobre el factor de respuesta R. Los estudios realizados permitieron identificar distintas variables que intervienen y deducir ecuaciones y valores del factor R más precisos, Miranda y Bertero (1994) y Vielma et al. (2006).

Fig. 2-5. Regla o concepto de igual energía entre un sistema elástico y otro elasto-plástico.

En la actualidad el reglamento ASCE/SEI 7-10, al igual que los reglamentos de varios países de Latinoamérica, especifican un criterio para evaluar el factor R que considera no solo el efecto de la ductilidad, sino también la sobrerresistencia del sistema. De modo que:

$$\mathbf{R} = \mathbf{R}_{\mu} \, \boldsymbol{\Omega}_{\mathrm{o}} \tag{2-3}$$

Para explicar los conceptos involucrados en la Ecuación 2-3 resulta útil analizar la respuesta estructural mediante un diagrama corte basal- desplazamiento lateral, como se muestra en la Figura 2-6. El nivel de fuerza definido por el espectro de diseño se representa mediante el corte basal elástico, V_e , mientras que el nivel de diseño se indica mediante el corte basal V_D . Este nivel representa el inicio de la fluencia, cuando la estructura abandona el comportamiento lineal y elástico. El factor R reduce las fuerzas a un nivel correspondiente al estado límite último o de resistencia, no a un nivel de servicio.

A medida que los desplazamientos aumentan, la respuesta es no lineal y la estructura es capaz de desarrollar una resistencia mayor que V_D . La respuesta real de la estructura puede aproximarse mediante una respuesta bilineal equivalente, a los efectos de definir el nivel de fluencia (con corte basal V_Y).

El factor de sobrerresistencia Ω_o tiene en cuenta la

reserva de resistencia entre los niveles V_Y y V_D, la cual surge de la redundancia estructural, de la sobrerresistencia de los materiales, del sobredimensionamiento de los miembros, de combinaciones de cargas distintas al sismo, de límites de distorsión de piso, del efecto del factor de resistencia, etc. En los comentarios de la recomendación FEMA 450, *NEHRP Recommended Provisions for Seismic Regulations For New Buildings and Other Structures* (FEMA, 2003) se presenta una detallada descripción conceptual del factor Ω_o y se analiza el mismo considerando que su valor está determinado por tres factores $\Omega_o = \Omega_D \Omega_M \Omega_S$. Estos tres factores representan la sobrerresistencia de diseño, la debida al material y la del sistema, respectivamente.

Fig. 2-6. Respuesta global del sistema, con indicación de los factores R, Ω_o y C_d .

El factor de reducción R_{μ} considera la ductilidad del sistema (definida como $\mu = \delta_S / \delta_Y$) que proporcionan los componentes con capacidad para disipar energía. El factor R_{μ} cuantifica la diferencia entre el nivel de respuesta elástica, V_e , y la resistencia V_y de la estructura.

El uso del factor de modificación de respuesta simplifica el proceso de diseño, porque el ingeniero estructural sólo debe realizar un análisis elástico, aun cuando la estructura se deforme en rango no lineal. Sin embargo, es importante resaltar que el análisis elástico no permite evaluar adecuadamente los desplazamientos laterales, dado que los obtenidos por ese procedimiento (δ_e) son menores que los desplazamientos que se producirán en rango inelástico. Esta es la razón por la cual se considera un factor de amplificación de desplazamientos, C_d, para estimar los desplazamientos de diseño δ_s , como se indica esquemáticamente en la Figura 2-6.

Puede concluirse que las acciones se definen a partir de un espectro de diseño considerando el comportamiento lineal y elástico del sistema (ver Figura 2-6, punto A), que se reduce luego mediante el factor R, bajo la hipótesis de que la estructura dispone de adecuada capacidad de disipar energía y sobrerresistencia. Con la acción sísmica así definida se realiza el análisis estructural con métodos estáticos o dinámicos, para determinar solicitaciones de diseño y desplazamientos (punto B). Los desplazamientos de diseño se obtienen mediante la amplificación de los resultados del análisis elástico (punto C).

El factor de sobrerresistencia se utiliza luego en el diseño de ciertos componentes de estructuras dúctiles, por ejemplo columnas, con el objeto de aplicar conceptos del diseño por capacidad. Es decir, que esos componentes estructurales no se diseñan para resistir las solicitaciones correspondientes a la acción sísmica V_D sino para resistir las solicitaciones que se inducen cuando la estructura desarrolla su resistencia real ($\Omega_o V_D$).

Los valores del factor de modificación de respuesta R, del factor de sobrerresistencia Ω_o y del factor de amplificación de desplazamientos C_d , se encuentran tabulados en los respectivos códigos en función del tipo y material de la estructura. La evaluación de dichos factores, particularmente de R, se ha desarrollado a lo largo de varias décadas, de modo que en la actualidad se dispone de información confiable para los distintos tipos estructurales. La Tabla 2-1 presenta los valores correspondientes a estos factores para distintos tipos de estructuras metálicas, de acuerdo con las especificaciones ASCE/SEI 7-10, mientras que la Tabla 2-2 presenta los mismos factores pero para el caso de estructuras compuestas de acero y hormigón armado.

Del análisis de las Tablas 2-1 y 2-2 se observa que un mismo tipo estructural puede diseñarse con distintos valores de R, a criterio del ingeniero estructural, según sea la categoría que se adopte. Por ejemplo, para los pórticos no arriostrados especiales se adopta R=8 y para los ordinarios R=3.5, lo cual implica que el corte basal de diseño, V_D, será significativamente mayor en este último caso. Sin embargo, los pórticos ordinarios se verifican con criterios menos estrictos y los detalles constructivos y las conexiones son más simples y económicas. También se deduce de dicha tabla que la reducción por ductilidad ($R_{\mu} = R / \Omega_{o}$, según Ecuación 2-3) adopta usualmente valores comprendidos entre 4 y 3 para las estructuras con mayor capacidad de disipar energía, y varía entre 1.5 y 2 para las estructuras menos dúctiles. Para el caso extremo de estructuras sin detalles sismorresistentes (última fila de la Tabla 2-1), el factor de reducción por ductilidad es $R_u = 1$.

2.4 DESPLAZAMIENTOS LATERALES Y DIS-TORSIÓN DE PISO

El desplazamiento lateral que experimentan las estructuras por acciones como viento o sismo es una variable de importancia en el diseño, debido a su vinculación con tres aspectos: (i) la estabilidad estructural y el daño, (ii) el control de daño en elementos no estructurales, y (iii) el confort de los usuarios de la construcción. En el caso de la acción sísmica, el tercer aspecto no es significativo dado que el objetivo primario del diseño es evitar la pérdida de vidas humanas.

Como se indicó previamente, los desplazamientos calculados a partir del análisis elástico no representan adecuadamente el nivel al cual debe plantearse la verificación (punto B en Figura 2-6). Los desplazamientos laterales en estructuras sometidas a la acción sísmica de diseño son mayores por el desarrollo de la ductilidad. Es por ello que los códigos utilizan un factor de mayoración para obtener los valores de los desplazamientos de diseño.

Tabla 2-1. Valores de los factores R, $arOmega_o$ y C_d para	l
estructuras de acero según ASCE/SEI 7-10.	

Ciatama alam	-	<u>^</u>	<u>^</u>
Sistema sismorresistente	к	Ωο	Cd
Porticos no arriostrados especiales	8	3	5.5
Pórticos no arriostrados espe-	7	3	5.5
ciales con vigas reticuladas	-	-	
Porticos no arriostrados intermedios	4.5	3	4
Pórticos no arriostrados	3.5	3	3
Diulitatios			
camente	8	2	4
Pórticos especiales arriostrados concéntricamente	6	2	5
Pórticos ordinarios arriostrados concéntricamente	3.25	2	3.25
Pórticos con riostras de pandeo restringido	8	2.5	5
Muros especiales con placas de acero	7	2	6
Columnas en voladizo especia-	2.5	1.25	2.5
Columnas en voladizo ordina-			
rias	1.25	1.25	1.25
Sistemas estructurales de acero no detallados específicamente como sismorresistentes, exclu- vendo las columnas en voladizo	3	3	3
Sistemas duales con pórticos no arriostrados especiales capaces de resistir al menos el 25% de la fuerza sísmica de diseño.			
Pórticos arriostrados excéntri- camente	8	2.5	4
Pórticos especiales arriostrados concéntricamente	7	2.5	5.5
Pórticos con riostras de pandeo restringido	8	2.5	5
Muros especiales con placas de	8	2.5	6.5
Sistemas duales con pórticos no arriostrados intermedios capaces de resistir al menos el 25% de la fuerza sísmica de diseño			
Pórticos especiales arriostrados concéntricamente	6	2.5	5

Durante mucho tiempo, se utilizó el mismo factor R tanto para reducir las fuerzas elásticas como para amplificar los desplazamientos, fundamentando el criterio en el "criterio de igual desplazamiento" previamente explicado. En la actualidad, algunos códigos consideran factores diferentes para calcular los desplazamientos inelásticos, como en el caso de las reglamentaciones norteamericanas que utilizan para ese fin el factor C_d , de modo que el desplazamiento de diseño se determina como:

$$\delta = \frac{C_d \,\delta}{I} \tag{2-4}$$

donde I es factor de importancia, cuyo valor se encuentra tabulado (para el reglamento ASCE/SEI 7/10 varía entre 1.0 y 1.5).

Tabla 2-2. Valores de los factores R, Ω_o y C_d para estructuras compuestas o mixtas de acero y hormigón según ASCE/SEI 7-10.

Sistema sismorresistente	R	Ω。	Cd
Pórticos compuestos de acero y hormigón armado no arriostra- dos especiales	8	3	5.5
Pórticos compuestos de acero y hormigón armado no arriostra- dos intermedios	5	3	4.5
Pórticos compuestos de acero y hormigón armado no arriostra- dos ordinarios	3	3	2.5
Pórticos compuestos no arrios- trados de acero y hormigón armado parcialmente restringi- dos	6	3	5.5
Pórticos compuestos de acero y hormigón armado arriostrados excéntricamente	8	2.5	4
Pórticos compuestos especiales de acero y hormigón armado arriostrados concéntricamente	5	2	4.5
Pórticos compuestos ordinarios de acero y hormigón armado arriostrados concéntricamente	3	2	3
Muros compuestos especiales de acero y hormigón armado	6	2.5	5
Muros compuestos ordinarios de acero y hormigón armado	5	2.5	4.5
Muros compuestos de acero y hormigón armado con placas	6.5	2.5	5.5
Sistemas duales con pórticos no arriostrados especiales capaces de resistir al menos el 25% de la fuerza sísmica de diseño.			
Pórticos compuestos de acero y hormigón arriostrados excéntri- camente	8	2.5	4
Pórticos compuestos especiales arriostrados concéntricamente	6	2.5	5
Muros compuestos especiales de acero y hormigón armado	7	2.5	6
Muros compuestos ordinarios de acero y hormigón armado	6	2.5	5
Muros compuestos de acero y hormigón armado con placas	7.5	2.5	6
Sistemas duales con pórticos no arriostrados especiales capaces de resistir al menos el 25% de la fuerza sísmica de diseño.			
Pórticos compuestos especiales de acero y hormigón armado arriostrados concéntricamente	5.5	2.5	4.5
Pórticos compuestos ordinarios de acero y hormigón armado arriostrados concéntricamente	3.5	2.5	3
Muros compuestos ordinarios de acero y hormigón armado	5	3	4.5

En los procedimientos de diseño basados en fuerza, el control de desplazamientos se plantea como una verificación adicional, que en el caso de estructuras flexibles, como los pórticos no arriostrados, puede resultar en una modificación del diseño. Como parámetro de control usualmente se considera el desplazamiento relativo de piso, Δ , definido como la diferencia entre los desplazamientos horizontales últimos correspondientes al nivel superior e inferior del piso, o bien la distorsión horizontal de piso, θ_i , definida por (ver Figura 2-7):

$$\theta_i = \frac{\Delta_i}{\mathbf{h}_i} = \frac{\left(\delta_i - \delta_{i-1}\right)}{\mathbf{h}_i}$$
(2-5)

A nivel global, también se puede definir la distorsión de piso total como la relación entre el desplazamiento total y la altura del edificio:

$$\theta_T = \frac{\delta_T}{\mathbf{h}_T} \tag{2-6}$$

Los valores límites para los casos más usuales varían entre 0.01 y 0.02 dependiendo del tipo de estructura, la categoría de ocupación, etc.

Fig. 2-7. Deflexión lateral de la estructura y definición de la distorsión de piso.

2.5 ESTADOS DE CARGA Y ANÁLISIS

2.5.1 Factor de redundancia

La redundancia estructural es un concepto importante en el diseño sismorresistente (inicialmente fue introducido por el Código UBC en 1997, Bertero y Bertero, 1999) y distintos reglamentos consideran explícita o implícitamente su influencia. Tradicionalmente se define la redundancia como el número de ecuaciones que se requiere para la solución de un problema estructural, en adición a las ecuaciones de equilibrio. Esta definición se basa en aspectos vinculados al análisis, pero resulta inadecuada desde el punto de vista del diseño sismorresistente. Es por ello que la redundancia se relaciona con la configuración estructural de la construcción y con la posibilidad de falla de sus componentes. Un sistema estructural compuesto por muchos componentes diseñados para resistir la acción sísmica y en los cuales las fuerzas laterales se distribuyen entre gran parte de esos componentes, presenta una probabilidad de falla menor que un sistema con pocos componentes.

Bertero y Bertero (1999) indicaron que los efectos benéficos más importantes de la redundancia son la distribución de la disipación de energía en la estructura, evitando la concentración de daño y la reducción de la demanda de desplazamientos y ductilidad como consecuencia de efectos torsionales en rango elástico. Es por ello que las normas norteamericanas consideran un factor de redundancia, p, cuyo objeto es el de aumentar la acción sísmica de diseño en el caso de sistemas menos redundantes. Se consideran dos casos, con valores de 1.0 y 1.3. En forma general, el valor más elevado corresponde a estructuras donde la remoción de una riostra o de una viga resulta en una reducción del 33% o más de la resistencia lateral del piso. Este factor se aplica al estado de carga sísmica, según se indica en la sección siguiente.

Es importante mencionar que la consideración del factor de redundancia para incrementar la acción sísmica en estructuras con baja redundancia implica, prácticamente, una reducción del factor de modificación de respuesta R. Desde el punto de vista conceptual, puede concluirse que son tres los aspectos principales que afectan la respuesta de la estructura ante la acción sísmica: la ductilidad, la sobrerresistencia y la redundancia estructural. De este modo, la Ecuación 2-3 puede modificarse para incluir estos tres factores explícitamente en una única expresión:

$$\mathbf{R} = \mathbf{R}_{\mu} \ \Omega_{\mathrm{o}} \ 1/\rho \tag{2-5}$$

2.5.2 Combinaciones de carga con acción de sismo

Las especificaciones sísmicas para construcciones de acero requieren que la resistencia requerida se determine a partir de las combinaciones de carga estipuladas en el código de aplicación (por ejemplo el ASEC/SEI 7-10, ver Ecuaciones 1-2 y 1-4). En la consideración de la acción sísmica debe incluirse el efecto de la vibración vertical, E_v , según se explicó previamente en la Sección 2.1.3, y el factor de redundancia estructural, ρ , definido en la Sección 2.5.1. Es por ello que se aplica el siguiente criterio:

 En las combinaciones de carga 5 y 6 del método ASD (Ecuaciones 1-4) y en la combinación 5 del método LRFD (Ecuaciones 1-2), el efecto de la carga sísmica se determina como:

$$\mathbf{E} = \mathbf{E}_{\mathrm{h}} + \mathbf{E}_{\mathrm{v}} \tag{2-6}$$

 En la combinación de carga 8 del método ASD (Ecuaciones 1-4) y en la combinación 7 del método LRFD (Ecuaciones 1-2), el efecto de la carga sísmica se determina como:

$$\mathbf{E} = \mathbf{E}_{\mathbf{h}} - \mathbf{E}_{\mathbf{v}} \tag{2-7}$$

donde $E_h = \rho Q_{E_h}$, siendo Q_E el efecto de acción sísmica horizontal, cuya determinación se realiza de acuerdo a los requerimientos reglamentarios según el método de análisis a aplicar.

Adicionalmente, las especificaciones ASEC/SEI 7-10 requieren, en ciertos casos, que la determinación del efecto sísmico se realice considerando el factor de sobrerresistencia Ω_o (cargas sísmicas amplificadas). Para ello, el efecto sísmico incluyendo sobrerresistencia, E_m , que se considera en las combinaciones de carga se define como:

$$E_m = E_{mh} \pm E_v \tag{2-8a}$$

$$E_{\rm mh} = \Omega_{\rm o} \, Q_{\rm E} \tag{2-8b}$$

donde el signo del efecto sísmico vertical en la Ecuación 2-8a se aplica según corresponda, con igual criterio que el definido para las Ecuaciones 2-6 y 2-7. El reglamento ANSI/AISC 360-10 aplica este criterio en el diseño de componentes de estructuras dúctiles, en los cuales se contemplan los principios del diseño por capacidad, indicando en cada caso particular el valor de E_{mh} a considerar. De esta forma, se trata de diseñar ciertos componentes con un nivel de resistencia requerida mayor, resultante del desarrollo del mecanismo plástico. Las especificaciones indican explícitamente cuándo deben considerarse las cargas sísmicas amplificadas, por ejemplo para el diseño de columnas con carga axial elevada, bases de columnas, conexiones de riostras, etc.

2.5.3 Métodos de análisis

Los métodos de análisis han evolucionado paulatinamente según los avances de la ingeniería sismorresistente y el desarrollo y difusión de las computadoras como herramienta de cálculo. El primer método aplicado fue el de las fuerzas estáticas equivalentes, en el cual el efecto dinámico de la acción sísmica se representa en forma simplificada mediante fuerzas laterales. Este criterio aún se aplica en la actualidad para construcciones de baja o mediana altura con características de regularidad estructural en planta y en elevación. El segundo procedimiento es el "método de análisis modal espectral" que considera la naturaleza dinámica del problema.

Los reglamentos contemplan la posibilidad de realizar análisis dinámicos con integración temporal, definiendo la acción sísmica mediante varios registros de aceleración. Estos registros pueden ser obtenidos de sismos reales o bien generarse artificialmente y, cualquiera sea el caso, deben cumplir con requisitos especiales a los efectos de asegurar que representan adecuadamente el terremoto de diseño. De esta forma, se puede representar la naturaleza dinámica de la acción sísmica, si bien el volumen de los datos de salida es significativamente mayor que en los otros métodos, debido a que todas las variables (solicitaciones y desplazamientos) son funciones temporales y deben seleccionarse sus valores máximos a los efectos del diseño. El código ASCE/SEI 7-10 permite también realizar análisis dinámicos inelásticos, es decir, considerando el comportamiento real de la estructura. Sin embargo, la complejidad del análisis y la interpretación de los resultados son significativamente mayores, por lo cual este procedimiento debería ser aplicado solo por diseñadores con experiencia y conocimientos profundos de la dinámica no lineal. Los lectores interesados en profundizar sobre los métodos dinámicos pueden consultar los textos de Clough y Penzien (2010), y Chopra (2012), que representan excelentes referencias sobre estos temas.

El reglamento ANSI/AISC 341-10 indica algunas pautas para el análisis estructural en su Capítulo C. Para los análisis elásticos se requiere que la rigidez de los miembros de acero se determine a partir de las propiedades elásticas de las secciones, mientras que en el caso de miembros compuestos (acero y hormigón) se deben considerar las secciones fisuradas.

Finalmente, es importante presentar algunas consideraciones generales sobre el análisis estructural. Powell, 2010, indica que el análisis es solo una herramienta a aplicar en el diseño estructural, la cual comprende, en general, tres etapas: (i) modelación, (ii) computación e (iii) interpretación. La primer etapa requiere de experiencia y juicio crítico, a los efectos de formular un modelo que represente adecuadamente a la estructura real (recordar que un modelo nunca es "exacto"). La segunda etapa consiste en la resolución del modelo, tarea que se realiza computacionalmente con programas de análisis estructural, para obtener los resultados (esfuerzos y desplazamientos). Por último, la tercer etapa implica la interpretación y utilización de los resultados para tomar decisiones de diseño. Es por ello que resulta de fundamental importancia verificar los resultados obtenidos y así detectar eventuales errores que pueden ocurrir ya sea porque el modelo es inadecuado (error del usuario del programa) o bien por problemas en el proceso de computación (error del programa).

El significativo avance tecnológico, tanto de las computadoras personales como de los programas para análisis estructural, permite en la actualidad formular modelos computacionales con un alto grado de sofisticación y refinamiento. Las interfaces gráficas representan la estructura con gran detalle, con imágenes de gran realismo, y esta situación conduce usualmente a generar una sensación de seguridad sobre la precisión del
modelo. Sin embargo, el uso de estas modernas herramientas no garantiza que los resultados obtenidos sean correctos. Al respecto, resultan de gran valor las recomendaciones de Wilson (2010), "no use un programa de análisis estructural a menos que comprenda completamente los fundamentos teóricos y las aproximaciones aplicados en su desarrollo" y además "no formule un modelo computacional a menos que se hayan definido claramente las propiedades de los materiales, las cargas y las condiciones de borde". La modelación para el análisis estructural es un tema que, más allá de su relevancia, escapa de los alcances de este trabajo. Se recomienda al lector interesado profundizar este tema a partir de los textos de Powell (2010), y Wilson (2010).

2.6 TÉCNICAS AVANZADAS DE DISEÑO SIS-MORRESISTENTE

2.6.1 Sistemas de protección sísmica

Los criterios de diseño sismorresistente convencionales, presentados en secciones previas de este capítulo, se fundamentan principalmente en los conceptos de ductilidad (capacidad de disipar energía) y sobrerresistencia estructural, de modo que se pueden reducir las acciones de diseño inducidas por el sismo. Sin embargo, el desarrollo de la ductilidad implica la plastificación localizada en ciertas zonas de la estructura y eventualmente la ocurrencia de pandeo. Así por ejemplo, la Figura 2-8 muestra el daño resultante en el extremo de una viga, luego de la formación de una rótula plástica resultado de un ensavo de laboratorio. El comportamiento estructural es adecuado, pero el desarrollo de la ductilidad originó plastificación y pandeo local, lo cual es sinónimo de daño, el cual a su vez ocasiona pérdidas económicas.

Fig. 2-8. Imagen de la rótula plástica en el extremo de un viga luego de la realización de un ensayo de laboratorio.

A partir de la década de 1980 se produjeron avances significativos en la ingeniería sismorresistente, particularmente por el desarrollo e implementación de distintos dispositivos o sistemas innovadores para controlar la acción sísmica, con los cuales es posible evitar o reducir la necesidad de desarrollar deformaciones plásticas en la estructura. En términos generales, los sistemas para control de la vibración inducida por el sismo (o por otras acciones como el viento) se pueden agrupar en dos grandes categorías: (i) sistemas de control pasivo y (ii) sistemas de control activo, híbrido o semi-activo. La Figura 2-9 muestra esquemáticamente, a modo de resumen, la clasificación de los distintos sistemas de protección sísmica.

El primer grupo comprende una amplia gama de soluciones destinadas a modificar favorablemente algunas propiedades estructurales, tales como amortiguamiento, rigidez, resistencia y ductilidad. Estos dispositivos, usualmente, se incorporan a la estructura principal de modo tal que pueden remplazarse fácilmente en caso de que fuera necesario (en forma conceptualmente similar a un fusible en una instalación eléctrica). Los sistemas pasivos se pueden subdividir en dos grupos, de acuerdo al principio en el que se basa su funcionamiento, esto es, el asilamiento sísmico y la disipación adicional de energía (o amortiguamiento adicional).

Fig. 2-9. Clasificación de los distintos sistemas de protección sísmica.

El aislamiento sísmico se basa en el concepto de desacoplar la respuesta dinámica de la construcción con respecto a la componente horizontal del movimiento del terreno, mediante la colocación de elementos de muy baja rigidez horizontal dispuestos, generalmente, entre la construcción y sus fundaciones. Si bien se han propuesto muchos sistemas diferentes, su aplicación práctica se hizo realidad con el desarrollo de los aisladores formados por capas alternadas de goma (u otro material similar) y planchuelas de acero inoxidable. La primera aplicación de aisladores de goma se realizó en 1969 para una escuela de tres niveles en Skopje, Yugoslavia, diseñada y construida por un grupo de ingenieros suizos. Otro ejemplo importante es el edificio William Clayton, construido en 1981 en Wellington, Nueva Zelanda, donde se emplearon por primera vez aisladores de goma y plomo, que representa uno de los métodos de aislamiento sísmico más usados en la actualidad. En los últimos veinticinco años se han diseñado y aplicado otros sistemas de aislamiento, por ejemplo, el péndulo de fricción, sistema de pilotes encamisados, etc.

Los disipadores de energía, o sistemas con amortiguamiento adicional, mejoran la capacidad de disipar la energía trasmitida por el sismo y protegen la estructura principal de los daños que podrían originarse si se aplicaran los principios de diseño sismorresistente convencional. Estos sistemas han tenido una difusión relativamente rápida, siendo aplicados fundamentalmente para construcciones importantes y rehabilitación de edificios históricos, especialmente en Estados Unidos, Japón, Italia y Nueva Zelanda. Sin embargo, se han realizado también proyectos en Armenia, Chile, China e Indonesia para el uso de estos sistemas en edificios de vivienda de bajo costo.

El control activo, híbrido o semi-activo incorpora elementos especiales para la aplicación de fuerzas, los cuales son controlados por un procesador que recibe información de sensores ubicados en la estructura. De esta forma se logra, en tiempo real, contrarrestar los efectos peligrosos de la acción sísmica, mejorando la seguridad de la construcción. Esta técnica presenta ventajas importantes y ha tenido cierta difusión y desarrollo en los últimos veinte años para control de acciones de viento y sismo. Las principales desventajas son la necesidad de asegurar el suministro eléctrico durante el sismo y el mantenimiento constante de los elementos que integran el sistema de control para que funcione normalmente durante un terremoto. La mayoría de las aplicaciones de control activo de edificios se han realizado en Japón (el primer caso es el Kyobashi Seiwa Building, de once pisos, construido en 1989) y algunos casos aislados en Estados Unidos, Taiwán y China (Soong y Spencer, 2000).

El desarrollo e implementación de los diversos sistemas de protección sísmica surge, principalmente, como respuesta de la ingeniería estructural a una demanda de la sociedad, que requiere no solo evitar la pérdida de vidas humanas ocasionadas por los sismos, sino también reducir y controlar las pérdidas económicas resultantes del daño de la construcción y del lucro cesante producto de la interrupción de actividades económicas. Estas nuevas soluciones, que se fundamentan en el avance científico y tecnológico, presentan ventajas en términos económicos cuando el análisis se formula en forma integral, mediante una evaluación de costos y beneficios a lo largo de toda la vida útil de la construcción (ver Figura 2-10). El costo inicial de la obra puede incrementarse ligeramente (5 a10%) por la incorporación de sistemas de protección sísmica. Sin embargo, al producirse un sismo, estos sistemas permiten reducir o eliminar las pérdidas por daño y lucro cesante. Es por ello, que su aplicación se incrementa año a año, tanto en los países desarrollados como en desarrollo.

Para explicar conceptualmente el efecto estructural de los sistemas pasivos de protección sísmica, puede recurrirse a los principios de la dinámica y a consideraciones energéticas. La ecuación de equilibrio dinámico para un sistema de un grado de libertad sometido a la acción sísmica puede expresare como la suma de las fuerzas inerciales, f_i , la fuerza de amortiguamiento, f_d , y la fuerza restitutiva f_s (Uang y Bertero, 1988):

$$f_{i} + f_{d} + f_{s} = mv_{t} + cv + f_{s} = 0$$
 (2-9)

donde m es la masa del sistema, c el amortiguamiento viscoso, v_t es la aceleración total y \dot{v} la velocidad. Para el caso particular de un sistema lineal y elástico, la fuerza restitutiva es fs = k v (donde k es la rigidez y v el desplazamiento relativo). La aceleración total puede expresarse como la suma de la aceleración del suelo (registro de aceleración medido instrumentalmente) y de la aceleración relativa $v_t = v_g + v$, de modo que:

$$\mathbf{m}\ddot{\mathbf{v}} + \mathbf{c}\dot{\mathbf{v}} + \mathbf{f}_{s} = \mathbf{m}\ddot{\mathbf{v}}_{a} \tag{2-10}$$

Fig. 2-10. Esquema de la distribución de costos por inversión inicial, por reparación y pérdidas indirectas a lo largo de la vida útil de una construcción.

A partir de las ecuaciones de equilibrio dinámico puede derivarse una ecuación equivalente en términos de energía (multiplicando cada término por un diferencial de desplazamiento, dv, integrando y reagrupando):

$$E_{i} = E_{k} + E_{d} + E_{s} + E_{h}$$
 (2-11)

donde E_i representa la energía introducida por el sismo al sistema (*input*), E_k es la energía cinética, E_d es la energía disipada por amortiguamiento viscoso, E_s es la energía de deformación elástica y E_h es la energía disipada por comportamiento histerético. Es importante notar que las energías cinética y de deformación elásticas no son disipativas; por el contrario estas energías ingresan al sistema y se intercambian según sean los valores de la velocidad y del desplazamiento.

Para visualizar la diferencia, en términos energéticos (Ecuación 2-11) entre el diseño convencional y el asilamiento sísmico, Popov et al., 1993, propusieron una analogía en la cual la estructura se representa mediante un recipiente y la energía del sismo mediante un cierto caudal de agua que ingresa al mismo. En la Figura 2-11 se presenta una versión adaptada de la propuesta orginal de Popov et al. En el caso del diseño sismorresistente convencional, el ingeniero estructural solo puede controlar, dentro de cierto rango, la energía E_h que puede disipar el sistema (modificando la ductilidad de los miembros estructurales). Esta situación se representa en la Figura 2-11(a), en donde parte de la energía ingresada permanece en el recipiente, E_k y E_s , mientras que la energía excedente es disipada en dos turbinas, E_d (amortiguamiento viscoso) y E_h (histéresis).

Fig. 2-11. Analogía hidráulica para explicar los criterios de diseño (a) convencional, (b) con aisladores y (c) con disipadores.

Cuando se incorporan aisladores a la construcción, su efecto puede representarse en esta analogía mediante un desvío de parte del agua ingresante, con lo cual se logra reducir la energía E_i , ver Figura 2-11(b). Finalmente, el uso de elementos disipadores permite incrementar la energía disipada, E_d y/o E_h , según el tipo de disipador, con lo cual se mejora la respuesta estructural y se evita que los miembros de la estructura convencional incursionen en rango plástico y desarrollen ductilidad. En la Figura 2-11(c) se muestra esta situación, representando los disipadores mediante un recipiente adicional, para indicar que son dispositivos claramente diferenciables de la estructura principal, los cuales pueden remplazarse en caso de ser necesario.

Es importante mencionar que se han desarrollado sistemas de control que en un mismo dispositivo, o en forma separada, incorporan el aislamiento sísmico y la disipación adicional de energía. Con ello se logra optimizar la respuesta, combinando las ventajas de ambos sistemas.

Para mayor información el lector puede consultar la bibliografía específica sobre estos temas: Skinner et al. (1993), Soong y Dargush (1997), Naeim y Kelly (1999), Christopoulos y Filiatrault (2006), Kelly y Konstantinidis (2011), Liang et al. (2012).

2.6.2 Disipadores de energía

Dentro de la gama de posibilidades que ofrecen los sistemas de protección sísmica, los disipadores de energía son una alternativa interesante, y una de las más utilizadas, no solo para el diseño de nuevas construcciones sino también para la rehabilitación de obras existentes. La Figura 2-12 muestra los tres grupos principales en que pueden agruparse estos dispositivos, a partir de la variable que activa el mecanismo de disipación de energía. De todos estos dispositivos, resultan de interés según los objetivos de este libro, los disipadores de energía por fluencia del acero. Al respecto, es importante indicar que el reglamento ANSI/AISC 341-10 incorpora como sistema estructural los pórticos con riostras de pandeo restringido, que son disipadores por fluencia.

Fig. 2-12. Clasificación de los sistemas pasivos de disipación de energía.

Los disipadores de energía por fluencia de metales son dispositivos especialmente diseñados para asegurar una respuesta dúctil. Se han desarrollado e implementado distintas alternativas, cada una de las cuales presentan ventajas y también limitaciones, por lo cual el diseñador debe seleccionar la alternativa más conveniente. Muchos de estos disipadores han sido diseñados para ser colocados en estructuras arriostradas, con lo cual se logra una buena disipación de energía en combinación con una elevada rigidez lateral para controlar los desplazamientos y distorsión de piso. Usualmente se emplea el acero como material dúctil en este tipo de disipadores, por las ventajas conocidas de este material, si bien se han desarrollado otras soluciones, por ejemplo, con cobre. Los primeros dispositivos surgieron como una mejora de los pórticos arriostrados excéntricamente, con el objetivo de disponer el componente dúctil, o disipador, fuera de la viga, como se indica en la Figura 2-13 (a). Como ejemplo de estos disipadores pueden mencionarse los dispositivos ADAS (por la siglas en inglés de added damping and stiffnes) y TA-DAS (por la siglas en inglés de triangular-plates added damping and stiffnes) (Tsai, 1993). La Figura 2-14 muestra la imagen de un disipador ADAS de cobre, desarrollado en Chile (http://sirve.cl) y los detalles de un dispositivo tipo TADAS (Martínez-Rueda, J. E. (2002).

Fig. 2-13. Esquema de la ubicación de disipadores de energía en combinación con riostras de acero.

En otros casos, la disipación se produce en la misma riostra, ver Figura 2-13 (b), tal como ocurre en las riostras de pandeo restringido. En la Sección 2.7, al describir los tipos estructurales para construcciones de acero, se presentan aspectos generales sobre estos dispositivos y luego en el Capítulo 6 se describen los criterios reglamentarios de diseño.

La Figura 2-15 presenta dos disipadores de energía por fluencia del acero para ser incorporados en riostras. El primero de estos sistemas se basa en disipadores en forma de doble U que se deforman en rango inelástico, fluyendo en flexión, cuando la riostra se alarga o acorta por acción de la distorsión de piso (Aguirre y Sanchez, 1992). El otro es un sistema producido por la empresa Cast ConneX, que emplea un disipador en el extremo de la riostra. El disipador cuenta con una serie de elementos de acero (*"fingers"*) que fluyen en flexión. En la actualidad se dispone de una amplia gama de disipadores de energía por fluencia, los cuales pueden usarse no solo en pórticos arriostrados sino también en otras estructuras para edificios y puentes.

Fig. 2-14. Ejemplos de disipadores por fluencia, (a) ADAS y (b) TADAS.

2.7 SISTEMAS ESTRUCTURALES PARA CONSTRUCCIONES DE ACERO

Las estructuras de acero han evolucionado a lo largo de más de un siglo como resultado de la experiencia obtenida por la industria de la construcción y de numerosas investigaciones destinadas a optimizar su uso. Este avance ha permitido desarrollar distintos tipos de estructuras sismorresistentes, los cuales presentan variaciones no solo en su comportamiento estructural, sino también diferencias constructivas, funcionales y económicas. Esto le permite al ingeniero estructural seleccionar la solución más adecuada para casos particulares.

El reglamento ANSI/AISC 341-10 clasifica a los sistemas estructurales para construcciones sismorresistentes de acero en dos grupos, según se indica en la Figura 2-16 (las siglas que se indican en cada caso corresponden con la denominación en inglés adoptada por el reglamento).

Los sistemas del primer grupo se caracterizan porque el comportamiento está controlado principalmente por la flexión, mientras que en el segundo depende principalmente de las fuerzas axiales o el corte. Es importante observar que para un mismo tipo estructural el reglamento considera la posibilidad de que el sistema se diseñe como sistema especial u ordinario. Los sistemas especiales requieren verificaciones y detalles constructivos más estrictos, para asegurar un comportamiento muy dúctil, lo cual permite utilizar un factor de modificación de respuesta R mayor (y por ende la acción sísmica es menor).

Fig. 2-15. Disipadores por fluencia del acero en extremo de riostras (a) disipador en forma de doble U y (b) disipador desarrollado por Cast ConneX (http://www.castconnex.com/).

En contraposición, los sistemas ordinarios se diseñan con acciones sísmicas mayores (factor R menor) y por lo tanto el nivel de detalles requerido es menos estricto. Resulta difícil indicar a priori cuál de las dos alternativas resulta más económica. En principio, la experiencia indica que los sistemas especiales requieren menor cantidad de acero (secciones menores) si bien los detalles para conexiones son más costosos; en el caso de los sistemas ordinarios, la situación es inversa. El diseñador deberá evaluar las características y condicionantes de cada caso para encontrar la solución óptima, considerando aspectos estructurales, constructivos y de costo. En las secciones siguientes se describen, en términos generales, los distintos tipos de estructuras sismorresistentes de acero, especialmente aquellos que se encuentran explícitamente incluidos en las especificaciones sísmicas ANSI/AISC 341-10. Posteriormente, en los Capítulos 3, 4, 5, 6 y 7 y se presentan los aspectos particulares del diseño de cada uno de ellos.

Sistemas de pórticos a momento	Pórticos no arriostrados ordina- rios, OMF
	Pórticos no arriostrados interme- dios, IMF
	Pórticos no arriostrados especia- les, SMF
	Pórticos no arriostrados especia- les con vigas reticuladas, STMF
	Sistemas de columnas ordinarias en voladizo, OCCS
	Sistemas de columnas especia- les en voladizo, SCCS
Sistemas de pórticos arriostrados y muros de corte	Pórticos ordinarios arriostrados concéntricamente, OCBF
	Pórticos especiales arriostrados concéntricamente, SCBF
	Pórticos arriostrados excéntrica- mente, EBF
	Pórticos con riostras de pandeo restringido, BRBF
	Muros de corte especiales con placas de acero, SPSW

Fig. 2-16. Clasificación de los sistemas estructurales sismorresistentse para construcciones de acero.

2.7.1 Pórticos no arriostrados

Los pórticos no arriostrados o pórticos resistentes a momento son ensambles rectilíneos de vigas y columnas conectadas entre sí mediante soldaduras, pernos o ambos (ver figura 2-17). Los miembros componentes de estos pórticos quedan sometidos principalmente a momentos flectores y esfuerzos de corte, que controlan su diseño, razón por la cual también se los denomina "pórticos a momentos".

Este tipo estructural se caracteriza por su elevada capacidad de disipación de energía, cuando se diseña y construye para tal fin. Las especificaciones AN-SI/AISC 341-10 consideran tres niveles de desempeño, esto es: pórticos especiales, intermedios u ordinarios.

Un aspecto fundamental en el diseño de los pórticos no arriostrados son las conexiones viga-columna, las cuales son necesarias desde el punto de vista constructivo y deben asegurar que las vigas pueden desarrollar su capacidad a flexión. Como se mencionó en el capítulo anterior, se ha avanzado significativamente en este aspecto a partir de las lecciones aprendidas luego de los terremotos de Northridge y Kobe.

Dentro de las alternativas que ofrece este tipo estructural, las especificaciones sísmicas ANSI/AISC 341-10 contemplan un caso particular: los pórticos con vigas reticuladas (ver Figura 2.18). Éstos se caracterizan por contar con un segmento especial en la viga que se diseña para deformaciones inelásticas significativas cuando es sometido a la acción del sismo, de acuerdo a un mecanismo de deformación plástica como el que se indica en la Figura 2-19 (Basha y Goel, 1994, Goel et al., 1998). La disipación de energía resulta de la fluencia por flexión en los cordones de la viga y la fluencia axial y pandeo de las barras diagonales dentro del segmento especial. Las partes restantes de la viga y las columnas se diseñan para permanecer en rango elástico.

Fig. 2-17. Vista general de una estructura de pórticos no arriostrados para un edificio comercial.

De acuerdo a las especificaciones ANSI/AISC 341-10, la luz de la viga reticulada no debe exceder los 20 m y su altura total no debe ser mayor que 1.8m. La longitud del segmento especial debe estar comprendida entre 0.1 y 0.5 veces la luz de la viga (el primer límite surge de consideraciones para controlar la demanda de ductilidad en los componentes que fluyen, mientras que el segundo límite se debe a razones prácticas). La relación entre la longitud y la altura de cualquier panel dentro de la zona del segmento especial debe estar comprendida entre 0.67 y 1.5. Es recomendable disponer el segmento especial en la zona central de la viga, debido a que el esfuerzo de corte producido por las cargas gravitatorias es mínimo en esta posición.

Los ensayos estructurales realizados por distintos investigadores indican que los pórticos especiales con viga reticulada presentan un comportamiento dúctil, con una respuesta cíclica estable hasta distorsiones de piso del 3%.

2.7.2 Pórticos arriostrados concéntricamente

Los pórticos arriostrados surgieron a comienzos del siglo XX como una alternativa estructural para edificios de mediana y baja altura. La presencia de las barras diagonales o riostras modifica significativamente el comportamiento del pórtico, dado que se forma una estructura reticulada, con triangulaciones (ver Figura 2-20). Las acciones laterales de viento y sismo inducen en la estructura principalmente esfuerzos axiales de tracción y compresión. Este tipo estructural se caracteriza por una elevada rigidez lateral, lo que permite un adecuado control de los desplazamientos.

Fig. 2-18. Pórtico no arriostrado con vigas reticuladas, (a) segmento especial con reticulado en X, y (b) segmento con panel Vierendeel.

Fig. 2-19. Mecanismo de deformación plástica para casos típicos de pórticos no arriostrado con viga reticulada.

Se pueden plantear diferentes configuraciones, como se muestra esquemáticamente en la Figura 2-21. La adopción de la configuración más conveniente en cada caso se realiza a partir de consideraciones estructurales, funcionales y eventualmente aspectos estéticos. Las diferentes configuraciones se discuten con más detenimiento en el Capítulo 4.

Desde el punto de vista arquitectónico, los pórticos

no arriostrados pueden considerarse como menos invasivos, debido a que otorgan mayor libertad al diseñador en la distribución de espacios. La disposición de las riostras, ya sea en las fachadas o en pórticos interiores puede dificultar la ubicación de aberturas o dificultar las circulaciones. Sin embargo, muchos arquitectos han logrado excelentes diseños mostrando y resaltando las riostras como componentes importantes de la solución estética adoptada, como se muestra en los ejemplos de la Figura 2-22.

Fig. 2-20. Vista de un edificio en construcción con pórticos arriostrados.

Los arriostramientos concéntricos de acero presentan ventajas significativas para la rehabilitación sísmica de estructuras (ver Figura 2-23), ya que permiten fabricar los componentes de acero en taller y luego montarlos en obra con alteraciones mínimas de la actividad que se desarrolla en la construcción, particularmente en los casos en los que los pórticos arriostrados se disponen en la periferia de la construcción. Otra solución interesante es colocar solamente riostras de acero para rehabilitar estructuras aporticadas existentes (de acero u hormigón armado), tal como se muestra en la Figura 2-24.

Fig. 2-22. Edificio "Hearst Tower", en New York y Tokyo Sky Tree.

Fig. 2-21. Configuraciones típicas para pórticos arriostrados concéntricamente, (a) riostras en X, (b) en K, (c) en diagonal, (d) en V invertida y (e) en V.

Fig. 2-23. Vista de un pórtico arriostrado de acero utilizado para la rehabilitación de una estructura existente de hormigón armado.

Las especificaciones sísmicas AISC consideran dos categorías de pórticos arriostrados concéntricamente: especiales y ordinarios, según su nivel de desempeño para el cual se diseñarán. Como se indicó anteriormente, en los pórticos especiales se utiliza un factor de respuesta R mayor y los requerimientos y detalles son más estrictos que en el caso de los pórticos ordinarios.

Fig. 2-24. Ejemplo de rehabilitación mediante el agregado de riostras de acero a una estructura de hormigón armado.

2.7.3 Pórticos arriostrados excéntricamente

Los pórticos no arriostrados pueden exhibir una respuesta dúctil y estable; sin embargo, son estructuras relativamente flexibles y el diseño usualmente es controlado por las limitaciones de la distorsión de piso. Los pórticos con arriostramientos concéntricos representan una situación inversa, debido a que se caracterizan por una elevada rigidez lateral, pero su comportamiento sismorresistente puede verse afectado por el pandeo de las riostras comprimidas. Es por ello que en la década de 1970 se desarrolló en Japón (Fujimoto et al., 1972, y Tanabashi et al., 1974) y en Estados Unidos de América (Popov et al. 1987 y 1989) un sistema que trata de combinar las ventajas de los dos anteriores, contrarrestando sus debilidades. Así, surgieron los pórticos arriostrados excéntricamente, en los cuales las riostras se disponen deliberadamente de forma tal de generar una excentricidad en la viga (ver Figura 2-25) donde se inducen esfuerzos de corte y momentos flectores elevados. Estas zonas, llamadas enlaces (en inglés, link) se diseñan especialmente para disipar energía mientras el resto de los componentes se diseñan para responder esencialmente en rango elástico.

La Figura 2-26 muestra las configuraciones más usuales con el enlace (zona dúctil) ubicado en las vigas.

No es recomendable generar la zona de enlace en las columnas, debido a que en ese caso el esfuerzo axial (variable por efecto de la acción sísmica) dificulta la determinación precisa de la resistencia a flexión y corte. Además, la falla no deseada del enlace en la columna tendría consecuencias mucho más graves que si el mismo se dispusiera en las vigas.

Fig. 2-25. Ejemplos de pórticos con arriostramientos excéntricos (Cortesía de National Information Service for Earthquake Engineering, EERC, University of California, Berkeley).

La Figura 2-26(a) muestra un pórtico arriostrado con enlace interior, esto es en la parte central de la viga, mientras que las Figura 2-26(b) y (c) representan configuraciones con enlace exterior, en las que el enlace está en los extremos de la viga. En estos dos últimos casos la conexión viga-columna se encuentra ubicada en la zona dúctil, donde se generan solicitaciones elevadas de flexión y corte. Es por ello que la conexión debe diseñarse con requerimientos similares a los aplicados en el caso de conexiones en pórticos no arriostrados dúctiles.

Los pórticos arriostrados con conexiones excéntri-

cas constituyen un buen ejemplo de aplicación del diseño por capacidad, mediante el cual el diseñador define un mecanismo de deformación plástica (fluencia por flexión y/o corte en el enlace) y evita modos de falla no deseados (pandeo de las riostras y columnas). Estas estructuras representan una solución excelente para el diseño sismorresistente debido a que combinan una elevada rigidez lateral, por efecto de las riostras, y una muy adecuada capacidad de disipación de energía. Por estas razones, fueron adoptados rápidamente como sistema estructural en distinto tipo de construcciones sismorresistentes, incluso en casos de rehabilitación de estructuras existentes.

Fig. 2-26. Configuraciones típicas para pórticos arriostrados excéntricamente.

Los esfuerzos típicos que la acción sísmica induce en este tipo de pórticos se presentan en la Figura 2-27, para el caso de una estructura simple de dos pisos, con el enlace en la parte central de la viga. Se observa claramente cómo la conexión excéntrica genera esfuerzos elevados de flexión y corte en la zona del enlace. Estos esfuerzos son los que producen la fluencia en dicha zona, disipando energía y asegurando así una adecuada ductilidad al sistema. La relación entre el momento flector y el corte inducidos en el enlace puede modificarse si se varía la longitud del mismo. De esta forma el diseñador puede controlar el comportamiento del enlace, para que éste fluya por corte o por flexión, siendo el primer mecanismo de fluencia el más conveniente.

El enlace debe diseñarse y detallarse en forma adecuada para asegurar una respuesta dúctil y estable, para lo cual es importante controlar los problemas de inestabilidad por pandeo local. Los ensayos de laboratorio muestra que esto puede lograrse mediante el uso rigidizadores verticales dispuestos en el alma del perfil. La Figura 2.28 muestra el detalle típico de un enlace.

Fig. 2-27. Diagramas de solicitaciones por acción sísmica, (a) momentos flectores, (b) corte, y (c) esfuerzos axiales.

Fig. 2-28. Detalle del enlace en un pórtico con arriostramientos excéntricos

2.7.4 Sistemas de columnas en voladizo

Las columnas en voladizo (*cantiléver columns*) constituyen un sistema estructural simple, en el cual el comportamiento de las columnas está controlado por la flexión originada por las acciones laterales, tales como viento o sismo. En la Figura 2-29 se muestra el esquema de una columna en voladizo y se representan los diagramas de solicitaciones típicos. El diagrama de momentos flectores presenta su valor máximo en la base, donde la columna se empotra en la fundación o en otro elemento estructural. Este sistema se emplea en construcciones industriales, soportes de equipos o tanques, estanterías para mercaderías, pilas de puentes, etc. En la Figura 2.30 se presenta algunos ejemplos de construcciones que incorporan este sistema estructural.

Fig. 2-29. Esquema de una columna en voladizo y diagramas de solicitaciones.

Fig. 2-30. Ejemplos del sistema estructural columnas en voladizo.

Las especificaciones ANSI/AISC 341-10 consideran dos casos para las columnas en voladizo, esto es ordinarias o especiales, según el nivel de desempeño esperado. Las primeras se diseñan considerando que presentan una capacidad de deformación inelástica mínima como resultado de la fluencia por flexión, mientras que en las columnas especiales dicha capacidad es limitada. En ambos casos se especifica que las columnas deben diseñarse a partir de las combinaciones de carga amplificadas y que la carga requerida en la columna no puede exceder el 15% de la resistencia disponible.

En las columnas especiales se especifican ciertos requerimientos adicionales para alcanzar una respuesta con ductilidad limitada. Es así que se requiere que las columnas cumplan con los criterios de miembros de alta ductilidad y dispongan de arriostramientos para satisfacer las condiciones de vigas clasificadas como miembros de ductilidad moderada (para más detalle consultar la Sección D1 de ANSI/AISC 341-10). Además se requiere que la base de las columnas, a lo largo de una longitud de dos veces la altura de la sección, se considere como zonas protegidas y las soldaduras de empalmes y de la conexión base-columna cumplan los requerimientos de soldaduras de demanda crítica (ver Secciones 2.8.1 y 2.8.2 de este texto).

2.7.5 Pórticos con riostras de pandeo restringido

Las riostras de pandeo restringido son disipadores de fluencia incorporados en la misma riostra, ver Figura 2-13 (b), las cuales fueron desarrolladas originalmente en Japón (Watanabe et al., 1988; Wada y Nakashima, 2004) y han sido aplicadas como una conveniente solución estructural, ver Figuras 2-31 y 2-32, en varios países (Black et al, 2002; Sabelli et al, 2002; Tremblay et al., 2006; Palazzo et al., 2009). Esta es la razón por la cual las especificaciones sísmicas ANSI/AISC 341-10 incluyen estos dispositivos como sistema estructural: los pórticos con riostras de pandeo restringido (BRBF, *buckling-restrained braced frames*).

Las riostras de pandeo restringido están formadas por una barra o núcleo de acero recubierto por una capa deslizante o antiadherente; esta barra se inserta en un tubo exterior, el cual se rellena con mortero de cemento (*grout*), como se ilustra en la Figura 2-33. De esta forma, se logra que el núcleo de acero fluya tanto en tracción como en compresión, dado que el tubo exterior y el mortero de relleno evitan en pandeo global y local del núcleo. Las ventajas de las riostras de pandeo restringido frente a una riostra típica son significativas, debido a que se logra una respuesta estable y sin la reducción del área de los ciclos de histéresis por problemas de pandeo.

Fig. 2-31. Pórtico de acero con riostras de pandeo restringido.

Fig. 2-32.Vista de una riostra de pandeo restringido utilizada en nuevo edificio de la Universidad de California, Berkeley (Cortesía de National Information Service for Earthquake Engineering, EERC, University of California, Berkeley).

2.7.6 Muros de corte con placas de acero

Los muros de corte con placas de acero (SPSW, por las siglas en inglés de steel plate shear walls) son estructuras formadas por placas esbeltas (alma del muro) conectadas a componentes de borde horizontal (HBE) y vertical (VBE), ver Figura 2-34. En el caso de existir aberturas, éstas deben disponer de elementos intermedios de borde que rodeen totalmente su perímetro.

Las placas de acero se diseñan para fluir y pandear bajo la acción sísmica y constituyen así el principal mecanismo de deformación plástica y disipación de energía, mientras los componentes de borde permanecen en rango elástico. Solo se admite la formación de rótulas plásticas en los componentes de borde horizontal o vigas. Si bien este sistema estructural se ha usado desde hace varias décadas en distintos países, recién en el año 2005 fue explícitamente incluido en las especificaciones sísmicas del AISC. En la Figura 2-35 se muestra un ejemplo de este sistema estructural en un edificio en construcción.

Fig. 2-33. Detalle de una riostra de pandeo restringido, formada por un núcleo de acero de acero recubierto con una capa deslizante dentro de un tubo exterior relleno con mortero de cemento.

Fig. 2-34. Esquema de muros de corte con placas de acero (a) sin aberturas y (b) con aberturas.

El tipo más usual de muros con placas de acero es el que incluye placas esbeltas sin rigidizadores, y representa la base para la cual fueron formuladas las especificaciones sísmicas ANSI/AISC 341-10. Otra alternativa es el uso de muros con placas rigidizadas, mediante elementos adicionales de acero que incrementan la resistencia al pandeo de la placa por corte. De acuerdo con las características de los rigidizadores, se logra un efecto de rigidización total o parcial (en los casos en que son relativamente flexibles en comparación con la placa). Adicionalmente, pueden usarse muros compuestos con placas de acero, en los cuales se agrega hormigón en una o en ambas caras de la placa. La rigidización de la placa de acero tiene un efecto moderado sobre la rigidez y la resistencia de la estructura, pero mejora significativamente la respuesta histerética pues permite controlar el pandeo local y reducir el efecto de estrangulamiento de los ciclos (pinching, en inglés). Adicionalmente, el uso de rigidizadores disminuye la demanda de resistencia y rigidez sobre los componentes de borde. Sin embargo, estas ventajas estructurales se ven contrarrestadas por un aumento de los costos y tiempos de construcción, por lo cual se recomienda el uso de placas sin rigidizar (Sabelli y Bruneau, 2006).

Fig. 2-35. Ejemplo de muros de corte con placas de acero en un edificio en construcción.

La publicación *Steel Design Guide 20-Steel Plate Shear Walls* (Sabelli y Bruneau, 2006) presenta una detallada descripción sobre el diseño de estas estructuras, con numerosos ejemplos de aplicación en USA, Japón, Canadá y México.

2.7.7 Estructuras con miembros compuestos

Las estructuras compuestas de acero y hormigón se han utilizado desde hace más de 120 años, particularmente para edificios y puentes. Las primeras aplicaciones se realizaron con miembros de acero embebidos en hormigón, con el objetivo principal de proveer protección contra el fuego y luego, a medida que se difundió el sistema, se aprovecharon las ventajas estructurales del mismo. La lista de ejemplos es muy amplia, por lo cual se mencionan solo uno pocos casos (en la bibliografía sobre el tema y en internet pueden encontrarse muchas aplicaciones más). El Empire State Building, ver Figura 2-36, construido en New York a principios de la década de 1930, tiene una estructura de acero aporticada embebida en hormigón. La acción compuesta no fue considerada en este caso para la determinación de la capacidad sismorresistente, si bien la rigidez lateral se duplicó a los efectos de verificar los desplazamientos de la estructura.

Fig. 2-36. Fotografías de la construcción del Empire State Building.

Otro ejemplo interesante es la *Millennium Tower*, en Austria, un edificio de 51 pisos para uso comercial y residencial (Huber, 2001). En este edificio se requería un plazo de ejecución muy reducido por lo que se adoptó un sistema estructural formado por un núcleo central de hormigón armado convencional en combinación con pórticos formados por miembros compuestos. La estructura aporticada tiene columnas circulares embebidas y vigas de reducido espesor formadas por perfiles T embebidos en la losa de hormigón. El sistema constructivo adoptado, conjuntamente con una eficiente organización de las tareas, permitió construir, en promedio, 2.5 pisos del edificio por semana.

Fig. 2-37. Imagen del edificio Millenium Tower, en Viena, Austria.

En el caso de edificios de altura, una solución muy conveniente desde el punto de vista estructural y constructivo ha sido el uso de "super-columnas" compuestas. Éstas son columnas de gran tamaño, usualmente dispuestas en la periferia del edificio, que confieren a la estructura rigidez y resistencia lateral. Taranath (2012) presenta interesantes ejemplos de este tipo de construcciones, entre los cuales puede mencionarse el edificio Norwest Center (ahora Wells Fargo Center), Minneapolis, de 56 pisos, en el que se emplearon columnas de acero tipo cajón rellenas con hormigón de alta resistencia (70 MPa). En el momento de la construcción se estimó que el sistema estructural adoptado resultó 5 a 6 veces más económico que una estructura equivalente con columnas de acero.

También se han usado super-columnas formadas por un tubo circular de acero relleno con hormigón, como en el caso del edificio Pacific First Center, de 44 pisos. La estructura principal está formada por 8 columnas de 2.3 m de diámetro rellenas con hormigón de 130 MPa de resistencia a compresión. Además, se usaron 16 columnas compuestas, de menor diámetro, para conformar un pórtico perimetral cuya principal función es resistir cargas gravitatorias. La Figura 2-39 presenta un esquema estructural de la planta tipo del edificio.

En la Figura 2-40 se muestra la sección típica de las super-columnas compuestas circulares, donde usualmente se emplean pernos soldados para vincular el tubo exterior con el hormigón de relleno.

Fig. 2-38. Edificio Norwest Center (ahora Wells Fargo Center), Minneapolis, con super-columnas compuestas.

Fig. 2-39. Planta típica del edificio Pacific First Center.

Fig. 2-40. Super-columna compuesta de sección circular de acero con pernos de vinculación.

En la actualidad se emplean distintos tipos estructurales para construcciones sismorresistente compuestas. Los pórticos, ya sea con o sin arrostramientos, se pueden diseñar dentro de una amplia gama de alternativas, usando para vigas, columnas y riostras los distintos tipos de secciones compuestas, descriptos previamente en la Sección 1.5. Es decir que se pueden combinar miembros compuestos rellenos, embebidos, vigas compuestas con conectores de corte, losas compuestas y eventualmente miembros de acero o de hormigón armado, según los requerimientos particulares de cada caso. Los tipos de pórticos son los mismos que se presentaron en secciones anteriores para estructuras de acero.

En el caso de pórticos compuestos no arriostrados, es bastante usual combinar columnas compuestas, embebidas o rellenas, con vigas de acero estructural. Esta solución permite diseñar pórticos cuyas columnas presentan una rigidez y resistencia elevada, mientras que las vigas (que no requieren hormigón) se montan en obra rápidamente, reduciendo los tiempos de construcción y disminuyendo el uso de encofrados y apuntalamiento.

También pueden usarse secciones compuestas para muros sismorresistente, y al igual que en el caso de los pórticos, se dispone de numerosas alternativas para el diseño según se combinen perfiles y chapas de acero con hormigón armado para formar miembros embebidos, rellenos o ambos. Los tipos de secciones más comunes para muros compuestos se describen en el Capítulo 8, al presentar los requerimientos de diseño para este tipo de estructuras.

El uso de muros acoplados, ver Figura 2-41, representa una alternativa interesante en el diseño de edificios sismorresistentes. El efecto de acople que producen las vigas permite transferir fuerzas verticales entre los muros, lo cual modifica el comportamiento estructural, de modo que los muros no se comportan como miembros aislados sino que trabajan en conjunto (en forma similar a un pórtico). Las principales ventajas son:

- El acoplamiento, a través de las vigas, reduce el momento flector en la base de los muros individuales, debido a que parte del momento de vuelco es resistido por las reacciones verticales.
- Se induce un mecanismo plástico más eficiente, mediante la formación de rótulas plásticas no solo en la base de los muros sino también en las vigas de acople.
- La rigidez lateral de la estructura es mayor que la suma de las rigidices individuales de los muros aislados, lo que facilita el control de las distorsiones de piso.

Los muros acoplados, tradicionalmente, se han construido con hormigón armado. La posibilidad de incluir miembros compuestos representa una alternativa de gran interés por las ventajas que pueden lograrse. Los muros pueden diseñarse como miembros compuestos, de acero o de hormigón armado, mientras que las vigas de acople usualmente son miembros compuestos o de acero estructural. Dentro de estas alternativas, una solución conveniente es utilizar vigas de acero para acoplar los muros, ver Figura 2-42. Estas vigas presentan ventajas constructivas y estructurales, en comparación con vigas equivalentes de hormigón armado. Los principales inconvenientes de las vigas de hormigón armado surgen de las limitaciones propias de estos miembros estructurales para resistir fuerzas de corte muy elevadas (como las que pueden inducirse en los muros acoplados). Es por ello que usualmente debe disponerse de armadura de refuerzo diagonal, lo cual complica y demora el proceso constructivo.

Fig. 2-41. Ejemplos de muros acoplados

Fig. 2-42. Muros compuestos acoplados con vigas de acero.

Las vigas de acople de acero deben anclarse adecuadamente dentro de los muros para asegurar la transferencia de las fuerzas de corte y el desarrollo de la capacidad flexional de las vigas mediante la formación de rótulas plásticas. El anclaje usualmente se logra introduciendo los extremos de la viga en la sección del muro con una longitud adecuada y utilizando conecto-res para lograr una adecuada vinculación con el hormigón que forma parte del miembro compuesto. La Figura 2-43 muestra la imagen, tomada durante la construcción, de muros de hormigón armado acoplados con vigas de acero.

Fig. 2-43. Muros compuestos acoplados con vigas de acero (Lehmkuhl, 2002).

2.8 SISTEMAS SISMORRESISTENTES

El sistema sismorresistente (*seismic load resistent systems*, SLRS) de una construcción, comprende todos los componentes estructurales y sus conexiones, necesarios para transferir las fuerzas de inercia inducidas por el sismo desde su punto de origen hasta el terreno de fundación. Los componentes de un sistema típico, para el caso de edificios, pueden agruparse en:

- Componentes verticales, que usualmente se disponen formando un plano resistente y conforman uno o más de los tipos estructurales descriptos previamente, tales como pórticos no arriostrados, pórticos arriostrados, tabiques con placas de acero, etc.
- Diafragmas horizontales, formados por losas, riostras u otros componentes, con el objeto de trasmitir las fuerzas de inercia. Estos diafragmas actúan como placas horizontales que distribuyen dichas fuerzas entre los componentes verticales, permitiendo así que se transfieran hasta el terreno de fundación.
- Fundaciones, tienen como función transferir todas las cargas al terreno sobre el que se funda la construcción. De acuerdo a las características del terreno, tipo de estructura, técnicas constructivas disponibles, etc, se usan distintos tipos de fundaciones, tales como, bases superficiales, pilotes, bases corridas o continuas, etc.
- Conexiones, entre los distintos componentes que componen el sistema. El adecuado diseño y construcción de las conexiones constituyen un aspecto

fundamental para garantizar la condición sismorresistente de todo el sistema.

A los efectos de asegurar la respuesta dúctil y estable del sistema sismorresistente, las especificaciones sísmicas ANSI/AISC 341-10 definen los conceptos de zonas protegidas, soldaduras de demanda crítica y "área-k". Estos conceptos se explican en las secciones siguientes.

2.8.1 Conexiones

Las especificaciones ANSI/AISC 341-10 indican, en su sección D2, criterios generales para el diseño de conexiones en estructuras sismorresistentes. Estos requerimientos son:

a) Conexiones apernadas

- La resistencia a corte de la conexión con agujeros estándar debe calcularse como pernos tipo aplastamiento (la resistencia nominal no debe tomarse mayor que 2.4 d t F_u, ver ANSI/AISC 360).
- Pernos y soldadura no deben combinarse en una conexión para resistir en forma compartida la misma componente de una fuerza.
- Los agujeros para los pernos deben ser agujeros estándar o agujeros de ranura corta (en la dirección perpendicular a la carga aplicada).
- b) Conexiones soldadas

No se indican requerimientos especiales, salvo la aplicación del Capítulo J del ANSI/AISC 360.

 c) Conexiones compuestas Se indican una serie de requerimientos particulares, que por su extensión y especificidad, se describen en la Sección 2.8.6.

Estos requisitos son de carácter general; luego para los distintos tipos de estructuras se indican requisitos adicionales, particularmente en aquellas diseñadas como estructuras de ductilidad elevada.

2.8.2 Zonas protegidas

Las zonas protegidas constituyen porciones limitadas de ciertos miembros o componentes del sistema sismorresistente, que se diseñan especialmente para soportar deformaciones cíclicas inelásticas bajo la acción del sismo de diseño. Como ejemplo de estas zonas, pueden mencionarse las rótulas plásticas en vigas de pórticos no arriostrados y los conectores (o links) en pórticos arriostrados excéntricamente. Los resultados experimentales muestran la sensibilidad que presentan las zonas donde se desarrollan grandes deformaciones inelásticas a la presencia de discontinuidades originadas por soldaduras, perforaciones y cambios bruscos de sección. Muchas de las operaciones que se realizan durante la fabricación, el montaje y la terminación de la obra pueden crear este tipo de discontinuidades, por lo cual resulta necesario no sólo el diseño adecuado de la estructura, sino también la coordinación con otros grupos de trabajo, como por ejemplo los encargados de la construcción de los sistemas de instalaciones (electricidad, agua, aire acondicionado, etc).

Las especificaciones sísmicas ANSI/AISC 341-10 incluyen criterios precisos para el diseño, el detalle y la fabricación de las zonas protegidas, particularmente cuando se utilizan uniones soldadas. Con ello se busca evitar defectos físicos y metalúrgicos que podrían resultar en fractura del material y degradación de resistencia, con lo cual se afecta la respuesta estructural de todo el sistema. Sobre este tema, resulta de interés consultar la normativa AWS D1.8 *Structural Welding Code-Seismic Supplement,* editada por la *American Welding Society* y la referencia *Steel Desgin Guide 21: Welded Connections-A Prime for Engineers,* Miller (2006).

De acuerdo con las especificaciones sísmicas AN-SI/AISC 341-10, en las zonas protegidas se debe cumplir con las siguientes exigencias:

- Deben repararse las discontinuidades originadas por puntos de soldadura, ayudas de montaje, cortes irregulares, etc.
- No se deben colocar conectores de corte soldados o puntos de soldadura en las alas de las vigas (por ejemplo para asegurar placas de acero en losas mix-tas).
- No se deben disponer soldaduras, pernos y fijaciones para sostener paneles, carpintería, cañerías, otras instalaciones, etc.

No todas las zonas que experimentan deformaciones plásticas son consideradas como zonas protegidas. Así por ejemplo la zona panel en conexiones vigacolumna no se incluye en esta categoría. No obstante ello, es conveniente evitar discontinuidades aún en estos casos.

2.8.3 Tipos de soldaduras. Soldaduras de demanda crítica

La soldadura es un medio de unión muy utilizado en todo tipo de conexiones por sus muchas ventajas. Sin embargo, es importante reconocer que presenta limitaciones y que el diseño y la construcción de conexiones soldadas requiere de especial cuidado, para evitar problemas como los observados luego del terremoto de Northridge en 1994, descriptos en la Sección 1.4.5. Al respecto pueden considerarse tres tipos de soldaduras:

- Soldaduras no-sísmicas: son aquellas que corresponden a estructuras sin requerimientos sismorresistentes o bien estructuras donde se considera un factor de comportamiento R=3. En este caso, el diseño se realiza de acuerdo con las especificaciones ANSI/AISC 360-10 y AWS 1.1 *Structural Welding Code-Steel*.
- Soldaduras sísmicas: incluye todas las soldaduras de sistemas sismorresistentes (con R>3) y deben ajustarse a las especificaciones ASIC 341-10 y AWS D1.8 Structural Welding Code-Seismic Supplement.

Soldaduras de demanda crítica (*demand critical welds*): son soldaduras en sistemas sismorresistentes que pueden quedar sometidas a niveles de deformación de fluencia, de modo que su falla origina degradación de rigidez y resistencia en el sistema.

Las especificaciones ANSI/AISC 360-10 identifican específicamente los casos en que deben considerarse soldaduras de demanda crítica. Las soldaduras entre las alas de vigas y las columnas en pórticos no arriostrados especiales e intermedios y los empalmes soldados en columnas de pórticos arriostrados excéntricamente son ejemplos de dicho tipo de soldadura. Los electrodos y procedimientos constructivos deben cumplir con criterios adicionales indicados en las especificaciones ANSI/AISC 341-10 (Apéndice W) y en AWS D1.8 Structural Welding Code-Seismic Supplement. En particular, el metal de relleno de la soldadura debe cumplir con valores límites de energía absorbida, medida a través de ensayos de impacto Charpy (se requiere una resiliencia de 27J a 21°C en el ensayo Charpy V-Notch).

2.8.4 "Área-k"

En diversos detalles de estructuras metálicas, particularmente en el caso de nudos viga-columna de pórticos, es necesario utilizar rigidizadores, placas de continuidad o placas de refuerzo nodal (*doubler plates*), lo cual implica soldar en las zonas de unión entre ala y alma de perfiles laminados. Esta zona, denominada "área-k", se define como la región del alma de un perfil que se extiende desde el punto donde termina la transición entre ala y alma (definido por la dimensión "k") hasta 38 mm dentro del alma, como se ilustra en la Figura 2-44.

Las observaciones en estructuras de acero y los resultados de ensayos de laboratorio indican que las áreas-k son proclives a experimentar fracturas debido a que presentan propiedades diferentes al resto de la sección. El cambio de las propiedades se atribuye a las fuerzas de contacto que se generan al finalizar el proceso de laminación para corregir deformaciones y defectos que exceden las tolerancias permitidas (*cold roller straightening*). En este proceso, el material experimenta endurecimiento y envejecimiento por deformación, por lo cual se vuelve más resistente y duro, pero también más frágil y con menor resiliencia. Es por ello que no se recomienda realizar soldaduras en estas zonas (FEMA, 2000g).

En los Comentarios de las especificaciones AN-SI/AISC 341-10 se recomienda usar cortes en las esquinas de las placas y rigidizadores pare evitar el contacto en las áreas-k. En la Figura 2-45 se muestra el uso de este detalle constructivo para el caso de placas de continuidad con dos opciones: cortes rectos y cortes curvos (con un radio mínimo de 13mm).

Fig. 2-44. Definición del "área-k" en perfiles laminados.

Fig. 2-45. Detalle de placas de continuidad con cortes rectos y curvos en las esquinas.

En aquellos casos que no se puede evitar la soldadura en las áreas-k o éstas han sido realizada por error, debe inspeccionarse esas soldaduras de acuerdo al procedimiento establecido en Capítulo J de las especificaciones ANSI/AISC 341-10, mediante ensayos con partículas magnéticas.

2.8.5 Arriostramientos para estabilidad de vigas

Las especificaciones requieren, para las vigas pertenecientes a distintos sistemas estructurales, que se dispongan arriostramientos para restringir la inestabilidad lateral y torsional. El arriostramiento de vigas es un tema más complicado que el de columnas, por el hecho de que el pandeo de vigas implica la combinación de esfuerzos de flexión y torsión. Es por ello que en esta sección se profundiza este tema a partir de las consideraciones indicadas por Yura (2001) y Ziemian (2010).

En primer lugar se analizarán algunos aspectos básicos del arriostramiento de columnas, los cuales luego se extenderán al caso de vigas. Para ello se considera una columna recta, biarticulada, de longitud 2 L_b, con una carga de compresión P, la cual presenta un arriostramiento elástico cuya rigidez es β_L . Se puede demostrar que la carga crítica, P_{cr}, de esta columna ideal depende de la rigidez del arriostramiento, según se indica en la Figura 2-46.

Fig. 2-46. Efecto de la rigidez del arriostramiento en la carga crítica de una columna.

Para valores relativamente altos de la rigidez β_L , el arriostramiento es totalmente eficiente y la carga crítica es igual a la carga de Euler $P_e = \pi^2 EI / L_b^2$. Sin, embargo, si la rigidez β_L es menor que un cierto valor límite, el arriostramiento pierde eficiencia y la carga crítica disminuye. En el caso límite de que la rigidez tienda a cero, la carga crítica se reduce cuatro veces, dado que la longitud de pandeo aumenta al doble. Estos resultados indican que el arriostramiento debe tener una cierta rigidez, como mínimo, para ser efectivo. En el caso de columnas reales, es decir que no son perfectamente rectilíneas, se puede demostrar que además de la rigidez es necesario que el arriostramiento tenga una resistencia adecuada. Este requerimiento de resistencia depende de la excentricidad inicial de la columna y de la relación P/Pe. La resistencia mínima del arriostramiento usualmente se expresa como un porcentaje de la carga crítica Pe. Los valores calculados indican que dicho porcentaje puede tomar valores relativamente bajos, del orden del 1 o 2%, pero puede crecer significativamente si se incrementa la excentricidad inicial de la columna o si la carga P se aproxima a la carga crítica.

Para el caso de vigas, se consideró durante mucho tiempo que las mismas son perfectamente rectas y en forma aproximada se aplicó la "regla del 2%", por la cual se considera que el arriostramiento debe resistir una fuerza igual al 2% de la carga de compresión actuante. En la actualidad, este criterio se ha modificado y las especificaciones AISC incluyen requerimientos de rigidez y resistencia para el arriostramiento de vigas, los cuales dependen del tipo de arriostramiento, según se explica a continuación. Los sistemas de arriostramiento para la estabilidad de vigas pueden dividirse en dos categorías principales: arristramiento lateral y torsional (ver Figuras 2.47 y 2-48). El primer grupo, com su nombre lo indica, impide el desplamiento lateral y su efectividad se mide por la capacidad de restringir el giro de la sección transversal de la viga. La mayor efectividad se logra arriostrando el ala comprimida, por ejemplo mediante un conjunto de barras diagonales dispuestas en un plano horizontal; en el caso de una viga simplemente apoyada conviene arriostrar el ala superior.

Los arriostramientos torsionales restringen el giro de la sección en forma directa, por ejemplo, mediante diafragmas verticales o arriostramientos cruzados (*cross-frame*), dispuestos en un plano perpendicular al eje longitudinal, que vinculan dos vigas entre si. Estos diafragmas, que conforman con las vigas un pórtico transversal, se consideran arriostramientos porque impiden el giro, aún cuando la viga se desplace lateralmente.

Fig. 2-47. Tipos de arrostramiento para la estabilidad de vigas.

Arriostramientos laterales	Relativos			
	Nodales o discretos			
	Continuos			
	De apoyo o <i>lean-on</i>			
Arriostramientos torsionales	Nodales o discretos			
	Continuos			

Fig. 2-48. Clasificación de los arriostramientos.

Los arriostramientos laterales, a su vez, se pueden subdividir en cuatro tipos: relativo, nodal o discreto, continuo y de apoyo o *lean-on*. Los arriostramientos relativos controlan los desplazamientos laterales relativos mediante un sistema de riostras dispuesto de modo tal que si se realiza un corte transversal en cualquier punto a lo largo de la viga siempre pasa a través de al menos una de estas riostras.

Los arriostramientos laterales nodales (discretos) emplean riostras que pueden representarse mediante un resorte lateral, por ejemplo cuando se usan cables tomados al ala superior de las vigas como arriostramiento temporario durante el montaje. Los arriostramientos laterales continuos representan el caso de una losa vinculada mediante conectores al ala superior de las vigas. Finalmente, los arriostramientos laterales de apoyo, o *lean-on*, utilizan puntales o bielas para vincular las vigas a otras que están arriostradas mediante otro sistema, como se indica en la Figura 2-49. La principal ventaja de este tipo de arriostramiento es que permite reducir los costos, por ejemplo en el caso de puentes formados por muchas vigas dispuestas en forma paralela para formar el tablero del mismo.

Fig. 2-49. Arrostramiento tipo "lean-on, donde los puntales se apoyan en un arriostramiento torsional.

El reglamento ANSI/AISC 360-10, en el Apéndice 6, solo considera el caso de arriostramientos lateral relativo y nodal, para los cuales se indican los valores de resistencia requerida, P_{br} , y rigidez mínima, β_{br} . Para arriostramiento lateral relativo:

$$P_{br} = \frac{0.008M_r C_d}{h_o}$$
(2-12)

$$\beta_{br} = \frac{4M_r C_d}{\phi L_b h_o}$$
(2-13)

donde M_r es la resistencia requerida a flexión, h_o es la distancia entre los centros de gravedad de las alas del perfil y L_b es la longitud no arriostrada lateralmente. En general, y salvo que se indique lo contrario, puede considerarse que $Mr = R_y F_y Z / h_o$. El coeficiente C_d adopta valores $C_d = 1.0$, en general, o $C_d = 2.0$ para el caso del arriostramiento más cercano al punto de inflexión en una viga solicitada a flexión en doble curvatura. En el caso de arriostramiento lateral nodal (discreto) se requiere:

$$P_{br} = \frac{0.002M_{r}C_{d}}{h_{o}}$$
(2-14)

$$\beta_{br} = \frac{10 M_r C_d}{\phi L_b h_a}$$
(2-15)

Fig. 2-50. Vista inferior de un puente carretero con arriostramientos torsionales.

Los arriostramientos torsionales (como el ejemplo que muestran en la Figura 2-50) se dividen en discretos o nodales y continuos, con igual criterio que el indicado previamente para los arriostramientos laterales. Para el primer caso, el reglamento ANSI/AISC 360-10, en el Apéndice 6, requiere:

$$P_{br} = \frac{0.024M_{r}L}{nC_{b}L_{b}}$$
(2-16)

$$\beta_{Tb} = 1 - \frac{\beta_{T}}{\beta_{sec}}$$

$$\beta_{T} = \frac{2.4 M_{r}^{2} L}{\phi n E I_{y} C_{b}}$$

$$\beta_{sec} = \frac{3.3E}{h_{o}} \left(\frac{1.5h_{o} t_{w}^{3}}{12} + \frac{t_{st} b_{s}^{3}}{12} \right)$$
(2-17)

donde L es la luz de la viga, C_b es un factor de modificación según la distribución de momentos, n es el número de puntos arriostrados nodalmente, β_T es la rigidez del arriostramiento excluyendo la distorsión del alma y β_{sec} es la rigidez distorsional del alma, incluyendo el efecto de rigidizadores si los hay. Si $\beta_{sec} < \beta_T$ la rigidez requerida es negativa, según la Ecuación 2-17, lo cual indica que el arriostramiento no será efectivo debido a que la rigidez distorsional del alma es inadecuada. Para el caso de arriostramientos torsionales continuos las Ecuaciones 2-16 y 2-17 son aplicables con las siguientes modificaciones:

$$\beta_{\rm sec} = \frac{3.3Et_w^3}{12h_o}$$

y L_b se adopta como la máxima longitud no arriostrada permitida para la viga basada en la resistencia requerida a flexión M_r .

Por las características propias de cada sistema, se recomienda usar los arriostramientos torsionales en caso de vigas con carga axial nula o muy reducida. En los casos de vigas axialmente comprimidas es conveniente usar arriostramientos laterales o bien una combinación de ambos.

2.8.6 Conexiones compuestas y anclajes de acero

El diseño de las conexiones compuestas, al igual que en el caso de las conexiones de acero, representa un aspecto de fundamental importancia para lograr una solución adecuada estructuralmente y conveniente desde el punto de vista constructivo y económico. Algunas de las ventajas de este tipo de conexiones son que permite, usualmente, reducir el uso de soldadura en obra (en comparación con las conexiones de acero) y evitar o minimizar los problemas asociados al anclaje y empalme de barras de refuerzo (en comparación con los nudos de estructuras de hormigón armado).

La combinación de distintos materiales y miembros estructurales, propios de la construcción compuesta, resulta en numerosas alternativas para las conexiones, razón por la cual no se dispone de detalles estandarizados. No obstante ello, el reglamento ANSI/AISC 341-10 incluye pautas generales de diseño en la Sección D2.7. En los comentarios de dicho reglamento se indica que, en las construcciones compuestas construidas hasta la fecha, los ingenieros estructurales han diseñado las conexiones a partir de principios básicos de mecánica, condiciones de equilibrio, requerimientos existentes para estructuras de acero y hormigón armado, resultados experimentales y buen criterio.

Las fuerzas que se generan en los miembros compuestos, entre el acero estructural y el hormigón, deben transferirse mediante alguno de los siguientes mecanismos:

- Aplastamiento por contacto directo entre el acero y el hormigón.
- Conectores de corte.
- Transferencia de corte por fricción, para lo cual debe asegurarse el desarrollo de fuerzas de anclaje (*clamping forces*) mediante refuerzo normal al plano de corte.
- Una combinación de los mecanismos anteriores, siempre y cuando la rigidez y capacidad de deformación propia de cada uno de ellos lo permita.

La evaluación de la resistencia por aplastamiento y corte por fricción debe realizarse de acuerdo con el reglamento ACI-318, Capítulos 10 y 11.

La adherencia entre acero estructural y hormigón no puedo considerarse como un mecanismo válido de transferencia. Ello se debe a que este mecanismo no es efectivo para resistir cíclicas o dinámicas en rango inelástico y, además, la resistencia por adherencia es altamente variable, dependiendo de las condiciones de la superficie, retracción del hormigón, etc.

La resistencia nominal a corte de la zona panel de la conexión, en el caso de que esté embebida en hormigón, se determina como la suma de las resistencias nominales del acero estructural y del hormigón armado confinado.

Adicionalmente a estos criterios generales, el reglamento indica otros requerimientos que deben cumplir las conexiones compuestas. Así por ejemplo, es necesario disponer de placas laterales de apoyo (*face bearing plates*) entre las alas de la viga y a cada costado del alma, ver Figura 2-51. Estas placas no solo cumplen una función estructural, sino que sirven también como elementos de cierre, para permitir un adecuado colado del hormigón, cuando la viga se conecta con miembros compuestos embebidos o de hormigón armado.

Fig. 2-51. Conexión de una columna de hormigón armado con una viga de acero que atraviesa el nudo.

El hormigón debe reforzarse con armaduras longitudinales y transversales, cumpliendo con los requerimientos de anclaje y longitudes de empalme necesarios para estar armaduras (según reglamento ACI-318). La función de las armaduras es resistir las tensiones de tracción y proporcionar confinamiento al hormigón en la zona de la conexión. Es importante controlar el posible deslizamiento de las barras de refuerzo en la zona del nudo, para lo cual se aplican los criterios usuales del diseño de hormigón armado (como por ejemplo, limitar el diámetro de las barras longitudinales).

La necesidad de que las conexiones dispongan de capacidad de deformación es aplicable tanto a las diseñadas para resistir cargas gravitatorias como para aquellas que forman parte del sistema sismorresistente. En el caso de conexiones diseñadas para cargas gravitatorias, si bien no forman parte del sistema sismorresistente, se requiere cierta capacidad de rotación para evitar fallas. Así por ejemplo, la Figura 2-52 muestra la conexión de una viga de acero con un muro de hormigón armado mediante una placa conectada con pernos al alma de la viga y soldada a otra placa anclada en la cara lateral del muro. Esta conexión debe diseñarse para transferir la fuerza de corte del extremo de la viga bajo la acción de rotaciones o momentos generados por la deformación de la estructura ante la acción sísmica.

Fig. 2-52. Conexión de una viga de acero con un muro de hormigón armado.

En el Capítulo 8 se presentan los criterios y aspectos principales del diseño de estructuras compuestas sismorresistentes y se incluyen ejemplos de algunas conexiones típicas.

Los anclajes de acero, en sus distintos tipos, son elementos de aplicación usual en las conexiones compuestas. Se dispone de evidencia experimental que indica que la resistencia y rigidez de los anclajes disminuye bajo la acción de cargas cíclicas, como el sismo. Esta degradación resulta particularmente seria en el caso de anclajes sometidos a la acción combinada de fuerzas de corte y tracción. Es por ello que, en forma conservativa, el reglamento ANSI/AISC 341-10 requiere una reducción del 25% de la resistencia nominal a corte y tracción en anclajes (pernos y barras soldadas) en los que se espera el desarrollo de la fluencia.

2.9 REHABILITACIÓN SÍSMICA DE CONS-TRUCCIONES EXISTENTES

2.9.1 Aspectos generales

En la actualidad, una cantidad significativa de edificios ubicados en zonas de actividad sísmica en todo el mundo no cumplen con los requerimientos de diseño sismorresistente que exigen los códigos modernos, de modo que son vulnerables y podrían resultar dañados ante la acción de un terremoto. Este problema se puso en evidencia en el terremoto de San Fernando, USA, en 1971, por lo que se iniciaron tareas de investigación para identificar y mitigar el riesgo sísmico (Moehle, 2000). Estas tareas continuaron, y se extendieron a otros países, lo que permitió que en la década de 1990 se dispusiera de criterios y procedimientos confiables para la rehabilitación. Una edición especial de Earthquake Spectra (Earthquake Engineering Research Institute, editada por Jirsa, 1996), muestra claramente los avances logrados en la investigación sobre reparación y rehabilitación de distintos tipos de estructuras.

Para ello se deben fijar objetivos a cumplir y, a partir de las deficiencias detectadas en los estudios de evaluación, se adoptan medidas o estrategias de rehabilitación. De esta forma es factible modificar favorablemente propiedades del sistema estructural tales como resistencia, ductilidad, rigidez, redundancia, regularidad estructural, etc. En la Figura 2-53 se presentan, en forma esquemática y resumida, los pasos del proceso de rehabilitación. Es importante aclarar que, por la complejidad del proceso y las particularidades de cada caso, estos pasos son indicativos y representan el proceso a seguir en las situaciones usuales.

Fig. 2-53. Esquema del proceso de rehabilitación sísmica.

Distintas organizaciones internacionales han editado documentos o reglamentos vinculados a la rehabilitación sísmica, como Federal Emergency Managment Agency (FEMA, 2000h; FEMA, 2006; FEMA, 2009), American Society of Civil Engineerns (ASCE, 2006) y New Zealand Society for Earthquake Egnieering (NZSEE, 2006).

Se acepta generalmente que la denominación "rehabilitación sísmica" se aplica en los casos de construcciones existentes que no cumplen con los criterios modernos de seguridad o desempeño, de modo que se implementan mejoras en forma preventiva (en la bibliografía en inglés, que constituye la referencia principal sobre el tema, se emplean los términos *retrofit*, *rehabilitation, upgrade* o *improvement*). En los casos en que la estructura ha sido dañada por un sismo, y su seguridad se ve comprometida, se usa normalmente el término "reparación" para designar el proceso destinado a recuperar un cierto nivel de seguridad. Si bien ambos procesos comparten muchos aspectos en común, cada uno presenta particularidades y diferencias que deben ser consideradas en particular.

Finalmente, es importante destacar que si bien el proceso de rehabilitación se basa principalmente en aspectos estructurales, existen otros factores que usualmente condicionan el proyecto y deben considerarse con especial cuidado, tales como costo de la rehabilitación, limitaciones funcionales y estéticas, procedimiento constructivo, interrupción de la ocupación del edificio, interferencia con instalaciones, etc.

2.9.2 Estrategias de rehabilitación

Las estrategias de rehabilitación permiten alcanzar los objetivos adoptados, solucionando las deficiencias detectadas en la evaluación estructural. Estas estrategias o medidas de rehabilitación pueden agruparse en las siguientes categorías (según los criterios adoptados en el documento FEMA 356, 2000):

- Modificación local de componentes estructurales: esta categoría comprende la realización de modificaciones locales en elementos estructurales para mejorar las conexiones o incrementar la resistencia y/o capacidad de deformación, sin afectar la configuración global de la estructura. Para lograr estos objetivos se han desarrollado numerosas soluciones, de acuerdo al material estructural y al tipo de elementos. A modo de ejemplo pueden mencionarse el uso de placas de acero para el confinamiento de columnas, el encamisado o recrecimiento de elementos de hormigón armado o el uso de materiales compuestos (como polímeros reforzados con fibras) que se adhieren a la estructura existente.
- Refuerzo global de la estructura: cuando la respuesta inelástica global de la estructura se inicia a niveles de resistencia significativamente menores que el nivel de diseño adoptado para la rehabilitación es necesario incrementar la resistencia de todo el sistema estructural. Para ello pueden reforzarse los elementos existentes (con los métodos descriptos para el caso de modificación local de componentes estructurales) o bien incorporar nuevos elementos estructurales. En este último caso es muy importante evaluar adecuadamente la interacción entre el sistema estructural existente y los nuevos componentes para evitar problemas que podría surgir por incompatibilidad o diferencias de compor-

tamiento entre ambos.

- Eliminación o reducción de irregularidades existentes: esta estrategia de rehabilitación es efectiva en aquellos casos en que el proceso de evaluación y análisis, mediante la observación de los perfiles de desplazamiento y las demandas de deformación inelástica, indican que la presencia de irregularidades de masa, rigidez y/o resistencia afectan significativamente la respuesta de la estructura. Frecuentemente, estas irregularidades surgen por discontinuidades en la estructura que pueden corregirse, por ejemplo mediante la incorporación de riostras de acero o tabiques de hormigón armado en lugares adecuadamente seleccionados. En otras situaciones es difícil eliminar dichas discontinuidades, como ocurre en el caso de construcciones patrimoniales con valor histórico, y deben buscarse otras alternativas para la rehabilitación.
- **Rigidización global de la estructura**: esta solución es aplicable cuando las deficiencias se originan en desplazamientos laterales excesivos y los componentes críticos no disponen de adecuada ductilidad para resistir las deformaciones así originadas. En estos casos es conveniente modificar el sistema estructural incorporando elementos que incrementen la rigidez lateral, como riostras o tabiques de distintos materiales.
- **Reducción de masas**: las fuerzas de inercia que el sismo genera sobre la estructura son directamente proporcionales a la masa, de modo que la reducción de ésta, en aquellos casos que es posible, es una alternativa para disminuir la demanda de resistencia y desplazamientos. Es decir que representa un forma de indirecta de reforzar y rigidizar la estructura. Ello puede ser posible eliminando elementos existentes pesados (particiones internas, contrapisos y pisos, revestimientos de piedras, equipamiento, etc.) y, eventualmente, reemplazándolos por otros más livianos.
- Aislamiento sísmico: la incorporación de aisladores, usualmente en las bases de la construcción, permite modificar favorablemente las propiedades dinámicas de la estructura. De esta forma se logra un aumento del periodo de vibración con lo cual se reduce significativamente la demanda en términos de aceleración. Esta técnica es más efectiva para el caso de edificios rígidos (periodos de vibración bajos a medianos) y con relaciones alto-anchura relativamente bajas. Se ha utilizado en países como Estados Unidos, Japón y Nueva Zelandia para la rehabilitación de edificios históricos, en los cuales el alto valor patrimonial de las construcciones justifica los altos costos de este proceso de rehabilitación.

Incorporación de disipadores de energía: estos dispositivos se incorporan a la estructura como nuevos componentes y permiten disipar energía a través de procesos friccionales, histeréticos o viscoelásticos, con lo cual se logra una reducción de la demanda en términos de desplazamientos y de aceleraciones. Usualmente los disipadores se vinculan a la estructura principal a través de riostras, por lo cual también se incrementa la rigidez lateral, y disipan energía a medida que el sistema se deforma. Este sistema, en general, es más efectivo para estructuras flexibles que presentan cierta capacidad de deformación inelástica. En muchos casos es conveniente combinar el aislamiento sísmico con disipadores de energía para reducir la demanda de desplazamiento en los aisladores. En este grupo también se incluyen los disipadores de masa sintonizada (que es un tipo de disipador activado por movimiento), el cual ha sido aplicado exitosamente para reducir el efecto de la acción del sismo y del viento.

2.9.3 Rehabilitación de estructuras de acero

En el caso particular de construcciones de acero, los pórticos no arriostrados construidos hasta mediados de la década de 1990 representan, en general, la mayor amenaza. Ello se debe, principalmente, a los problemas en el diseño y construcción de los nudos viga-columna, que a la luz de los conocimientos actuales, no cumplen con los requerimientos de seguridad estructural exigidos para las construcciones nuevas. Otro problema usual es la inadecuada resistencia de las columnas que no se ajustan al concepto de diseño "viga débil-columna fuerte".

Los pórticos arriostrados concéntricamente también pueden presentar distintos problemas, siendo los más usuales las deficiencias en las conexiones de las riostras, o inadecuada resistencia para resistir el pandeo global o local.

El estudio detallado del proceso de evaluación y rehabilitación de estructuras escapa del alcance del presente trabajo. Los temas específicos para las construcciones de acero se presentan en los documentos FEMA-351, *Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Building*, FEMA-352. *Recommended Postearthquake Evaluation and Repair Criteria for Welded Steel Moment-Frame Buildings* y *Steel Design Guide 12: Modification of Existing welded Steel Moment Frame Connections for Seismic Resistance* (Gross et al., 1999), entre otros.

Capítulo 3 Pórticos no arriostrados

3.1 INTRODUCCIÓN

Los pórticos no arriostrados, o pórticos a momentos, están formados por distintos componentes que se vinculan entre sí para formar una estructura resistente; usualmente los componentes principales son rectilíneos y se disponen en posición vertical (columnas) y horizontal (vigas). Desde el punto de vista estructural, y a los efectos del diseño, se deben considerar los siguientes componentes (ver Figura 3-1):

- vigas
- columnas
- conexiones viga-columnas
- panel nodal (o zona panel)
- empalmes
- base de columnas

Fig. 3-1. Componentes estructurales de un pórtico no arriostrado, (a) vista general y (b) detalle de una conexión viga- columna (http://ceephotos.karcor.com)

La Figura 3-1 muestra el esquema constructivo más usual para edificios, en el cual las columnas son conti-

nuas en la zona de los nudos, con empalmes ubicados en la zona central de las mismas. Las vigas se vinculan a las columnas en la etapa de montaje mediante las conexiones correspondientes, que representan uno de los componentes más importantes del sistema para asegurar una respuesta dúctil y estable. También se ha desarrollado e implementado un esquema constructivo, denominado pórticos con columna-árbol (column-tree frames, en inglés) en el que las columnas se fabrican en taller con tramos de vigas ya vinculados, y luego en obra se conectan los componentes entre sí para formar el pórtico con empalmes en vigas y columnas (zonas donde las solicitaciones por sismo son mínimas). De esta forma se logra que el nudo viga-columna se construya enteramente en taller bajo condiciones óptimas de trabajo, lo cual es muy importante para el caso de uniones soldadas.

3.1.1 Comportamiento estructural

Las distintas cargas que actúan sobre los pórticos no arriostrados inducen esfuerzos internos, controlando el diseño los momentos flectores. Para el caso particular de la acción sísmica (ver Figura 3-2) los momentos flectores desarrollan sus valores máximos en los extremos de vigas y columnas, donde pueden formarse rótulas plásticas para permitir la disipación de energía por fluencia del acero.

Fig. 3-2. Diagramas típicos de (a) momentos flectores y (b) esfuerzos de corte en un pórtico sometido a la acción sísmica.

Consideraciones analíticas y experimentales indican que se puede lograr una excelente respuesta estructural si se induce, a través del diseño, la formación de un mecanismo de "viga débil-columna fuerte". En este mecanismo, las rótulas plásticas se forman en los extremos de las vigas, mientras las columnas permanecen en rango elástico (con excepción de la base de las columnas), como se ilustra en la Figura 3-3(a). Las columnas están sometidas a carga axial variable por el efecto del sismo, lo cual afecta la resistencia y ductilidad de las mismas; además, la falla de una columna puede originar colapso parcial o total del edificio, mientras que la misma falla en un viga presenta efectos menos significativos. Estas son las razones principales por las que se protegen las columnas del pórtico, mediante la condición de que las mismas se mantengan en rango elástico. Para lograr este objetivo es de fundamental importancia aplicar los conceptos del diseño por capacidad de modo de obtener una respuesta dúctil, donde la plastificación de las vigas se produce en forma progresiva y el sistema es capaz de desarrollar una respuesta dúctil, ver Figura 3-3(b).

Fig. 3-3.Comportamiento estructural, (a) mecanismo de deformación plástica y (b) respuesta corte basaldesplazamiento lateral.

Las especificaciones ANSI/AISC 341-10 definen tres tipos de pórticos no arriostrados: especiales (SMF), intermedios (IMF) y ordinarios (OMF), de acuerdo al grado de comportamiento dúctil que se considera en el diseño. La diferencia fundamental entre ellos es que se diseñan con distintos niveles de capacidad de rotación inelástica en las rótulas plásticas. En las secciones siguientes se presentan los principales aspectos vinculados al diseño de las tres categorías de pórticos no arriostrados. No se incluyen los pórticos no arriostrados con vigas reticuladas (ver Sección 2.7.1) por tratarse de un tipo estructural muy particular, con aplicación limitada a casos especiales.

3.1.2 Conexiones viga-columna. Conexiones precalificadas

Las conexiones de los pórticos no arriostrados influyen significativamente en el comportamiento estructural de los mismos. Estas conexiones, en general pueden clasificarse en tres grupos, según su rigidez flexional. El primer grupo está constituido por las conexiones totalmente restringidas (FR, siglas por la denominación en inglés fully restrained), que son aquellas capaces de transferir momento flector con una rotación relativa despreciable. Usualmente se considera que esta situación requiere que la rigidez flexional de la conexión sea igual o mayor que 20 veces la rigidez de la viga, EI/L. Las conexiones parcialmente restringidas (PR, partially restrained) son capaces de transferir momento, pero en este caso la rotación no es despreciable. Esta condición se presenta con conexiones cuya rigidez flexional está comprendida entre 20 y 2 veces la rigidez EI/L de la viga. Si la rigidez de la conexión es menor se asume que la misma es equivalente a una articulación, de modo que su capacidad de transferir momentos es despreciable. Estos conceptos se ilustran en la Figura 3-4 mediante diagramas momento-rotación. Los pórticos no arriostrados sismorresistentes deben construirse con conexiones parcial o totalmente restringidas.

Fig. 3-4. Diagramas momento-rotación típicos de conexiones totalmente restringidas, parcialmente restringidas y articuladas.

Con el objeto de evitar las fallas en las conexiones

viga-columna observadas en el terremoto de Northridge (ocurrido en California, USA, en 1994), las especificaciones sísmicas vigentes requieren el uso de "conexiones precalificadas" en pórticos no arriostrados sismorresistentes. Se entiende como tal aquellas conexiones que han sido validadas en forma experimental, ya sea como parte del proyecto que se desarrolla o bien en ensayos previos que se encuentran debidamente documentados. El proceso de precalificación implica que:

- Existe suficiente información experimental y analítica para asegurar que la conexión presenta adecuada capacidad de deformación plástica.
- Se dispone de modelos racionales para predecir la resistencia asociada a los distintos modos de falla y la capacidad de deformación, a partir de las propiedades geométricas y mecánicas de los elementos componentes.
- Los datos existentes permiten evaluar estadísticamente la confiabilidad de la conexión.

Como resultado del proceso de precalificación, el ingeniero estructural dispone de criterios y pautas para diseñar la conexión. Adicionalmente, para cada tipo de conexión se indican el campo de aplicación y limitaciones para su uso, tales como dimensiones máximas de vigas y columnas, tipos de soldaduras, características del acero, etc.

3.2 PÓRTICOS NO ARRIOSTRADOS ESPE-CIALES

3.2.1 Aspectos generales

Los pórticos no arriostrados especiales son lo que presentan mayor capacidad de disipación de energía y, acorde a ello, se diseñan con un factor de modificación de respuesta elevado (R = 8 en los reglamentos norteamericanos). Se espera que las deformaciones inelásticas se desarrollen principalmente por flexión en las vigas y, en menor medida, en los paneles nodales de las columnas.

Las especificaciones sísmicas AISC vigentes, las cuales se basan en la recomendación FEMA-350 (FE-MA, 2000a), indican detalladamente las condiciones que deben cumplir los pórticos especiales. La estructura debe diseñarse para limitar la distorsión del panel nodal, evitar la rotulación en columnas y controlar los efectos de pandeo local. Los extremos de las vigas se consideran como zonas protegidas. Con estos requisitos se logra que la estructura desarrolle una respuesta dúctil y estable. Las rótulas plásticas deben exhibir una capacidad de rotación inelástica de 0.03 radianes, como mínimo, para lo cual se requiere el uso de conexiones precalificadas.

3.2.2 Conexiones viga-columna

Las conexiones viga-columna de pórticos no arriostrados especiales que forman parte del sistema sismorresistente de una construcción deben cumplir con las siguientes condiciones:

- La conexión debe ser capaz de soportar las rotaciones plásticas correspondientes a un nivel de distorsión de piso total de 0.04 radianes. Este nivel de distorsión es equivalente a una rotación plástica en las rótulas de 0.03 radianes (considerando que la distorsión elástica de piso es 0.01 radianes).
- La capacidad a flexión de la conexión, medida en la cara de la columna, debe ser como mínimo 0.8 M_p de la viga conectada para un nivel de distorsión de piso de 0.04 radianes (M_p es el momento de plastificación de la viga calculado con la tensión de fluencia para el acero especificado).
- La resistencia a corte requerida de la conexión debe determinarse a partir de las combinaciones de cargas amplificadas, para lo cual debe considerarse que el efecto de la acción sísmica amplificada (Ecuación 2-8b) es:

$$E_{\rm mh} = 2 \left(1.1 \ R_{\rm y} \ M_{\rm p} \right) / L_{\rm h} \tag{3-1}$$

donde R_y es la relación entre la tensión de fluencia esperada y la tensión mínima de fluencia, F_y , y L_h es la distancia entre rótulas plásticas en la viga. La Ecuación 3-1 se deduce a partir de consideraciones de equilibrio, tomando en cuenta la sobrerresistencia flexional (ver Figura 3-5).

Fig. 3-5. Mecanismo de deformación plástica con rotulación en vigas.

En las conexiones de pórticos especiales deben considerarse como soldaduras de demanda crítica las siguientes:

- Las soldaduras de ranura o penetración en empalmes de columna
- Los cordones de soldadura en conexiones del extremo inferior de la columna a la base.
- Los cordones de penetración completa en soldaduras que conectan las alas y alma de la viga a la columna.

3.2.3 Placas de continuidad

Las placas de continuidad son rigidizadores que se

disponen entre las alas de la columna, en niveles correspondientes a las alas de las vigas que llegan al nudo, con el objeto de asegurar una adecuada transferencia de las cargas de tracción y compresión que generan sobre la columna y de minimizar la concentración de tensiones generada por la diferencia de rigidez entre los elementos de la junta, ver Figuras 3-1(b) y 3-6. Además, las placas de continuidad sirven como límites para definir la zona del panel nodal, donde se pueden desarrollar tensiones y deformaciones elevadas.

Las placas de continuidad deben colocarse en las conexiones viga-columnas, salvo en los siguientes casos:

- Cuando así se indica en la conexión precalificada.
- Cuando la viga se suelda al ala de una columna, formada por un perfil I de alas anchas o un perfil armado, con un espesor, t_{cf}, que cumple con las siguientes condiciones:

$$t_{cf} \ge 0.4 \sqrt{1.8 \ b_{bf} \ t_{bf} \ \frac{F_{yb} \ R_{yb}}{F_{yc} R_{yc}}} \quad y$$
(3-2a)
$$t_{cf} \ge \frac{b_{bf}}{6}$$

donde b_{bf} es la anchura del ala de la viga, F_{yb} y F_{yc} representan la tensión de fluencia mínima de viga y columna, respectivamente, y R_{yb} y R_{yc} , representan la relación entre la tensión de fluencia esperada y la mínima para la viga y columna, respectivamente.

 Cuando la viga se suelda al ala de una columna formada por perfil I en sección cajón, con un espesor, t_{cf}, que cumple con las siguientes condiciones:

$$t_{cf} \ge 0.4 \sqrt{\left[1 - \frac{b_{bf}}{b_{cf}^2} \left(b_{cf} - \frac{b_{bf}}{4}\right)\right]} 1.8 \ b_{bf} \ t_{bf} \ \frac{F_{yb} \ R_{yb}}{F_{yc} \ R_{yc}}$$

y
$$t_{cf} \ge \frac{b_{bf}}{12}$$
(3-2b)

siendo b_{cf} la anchura del ala de la columna.

Fig. 3-6. Detalle de una conexión viga-columna

El espesor de las placas de continuidad debe determinarse según el siguiente criterio:

- En nudos exteriores el espesor debe ser como mínimo la mitad del espesor del ala de la viga.
- En nudos interiores el espesor de las placas deben ser como mínimo igual al espesor mayor de las alas de las vigas que llegan al nudo.
- Las placas deben cumplir con los criterios indicados en la Sección J10 de las especificaciones AN-SI/AISC 360-10, donde se definen las condiciones de rigidizadores adicionales para cargas concentradas.

Las placas de continuidad deben unirse a las alas de la columna mediante soldadura de penetración completa (*CJP groove welds*) y al alma de la columna con soldadura de ranura o de filete. La resistencia requerida para estas soldaduras está indicada en la Sección E3.6f de ANSI/AISC 341-10.

Las recomendaciones FEMA 350 (FEMA, 200a) indican la importancia de que las conexiones vigacolumna incluyan agujeros de acceso a soldadura, según el detalle de la Figura 3-7, para los cordones de soldadura de ranura que conectan el ala de la viga con el ala de la columna. Los ensayos de laboratorio indican que ésta es una solución adecuada para facilitar el acceso a la soldadora y minimizar el efecto de concentración de tensiones y deformaciones.

1- Bisel.

- 2- Mayor que t_{bf} o 13mm.
- 3- $3/4t_{bf}$ a t_{bf} (mínimo 19mm).
- 4- Radio mínimo 10mm.
- 5-3 t_{bf.}

Fig. 3-7. Detalle de agujero para acceso de soldadura (FEMA, 2000a).

3.2.4 Panel nodal

La zona nodal de las conexiones viga-columna es un componente flexible de los pórticos no arriostrados, y geométricamente se define como la región comprendida entre las alas de vigas y columnas. El panel nodal está sometido a elevadas solicitaciones que puede ocasionar deformaciones excesivas sino se diseñan adecuadamente, como se muestra en la Figura 3-8.

Fig. 3-8. Deformación del panel nodal por acción del sismo (Midorikawa et al., 2012).

Las especificaciones sísmicas vigentes requieren de la consideración de las deformaciones del panel nodal y plantean verificaciones de la resistencia del mismo, sin embargo los modelos de análisis usualmente no incluyen una representación explícita de dicha zona. Los modelos de barra que se emplean normalmente en el análisis de pórticos no arriostrados (ver Figura 3-9) permiten determinar las solicitaciones en vigas y columnas pero no definen las solicitaciones en el panel nodal.

Fig. 3-9. Solicitaciones en componentes adyacentes a un nudo viga-columna por acción sísmica, (a) momentos flectores y (b) esfuerzos de corte.

Para analizar en detalle el estado tensional en la zona del panel nodal es necesario formular modelos más refinados empleando, por ejemplo, elementos finitos bi o tri-dimensionales. En la Figura 3-10 se muestran las tensiones de corte obtenidas por la aplicación de dicho procedimiento. La escala de colores indica un significativo incremento de las tensiones de corte en la zona central del panel nodal. Sin embargo, es importante aclarar que en la práctica profesional los ingenieros estructurales raramente aplican modelos refinados (como el de la Figura 3-10) para estructuras completas, por el costo computacional que ello implica y por la complicación en la entrada de datos para definir el modelo y en la interpretación de resultados.

Fig. 3-10. Tensiones de corte en un nudo viga-columna modelado mediante elementos finitos bidimensionales.

Los esfuerzos internos en el panel nodal pueden determinarse, en forma más simple, mediante el diagrama de cuerpo libre indicado en la Figura 3-11, donde se ponen de manifiesto los esfuerzos de corte, cargas axiales y momentos flectores actuantes en las caras del panel. El efecto de la flexión puede representarse mediante fuerzas equivalentes, que se obtienen considerando que el momento flector resulta de una cupla formada por dos fuerzas axiales iguales y opuestas actuando en las alas del perfil. En la Figura 3-12 se indican las variables geométricas que definen el panel nodal y los elementos adyacentes.

A partir de consideraciones de equilibrio entre las fuerzas indicadas en el diagrama de cuerpo libre se puede determinar la resistencia requerida a corte en el panel nodal (Naeim, F., 2001):

$$V_p = \frac{M_1}{(d_{b1} - t_{f1})} + \frac{M_2}{(d_{b2} - t_{f2})} - V_c \qquad (3-3)$$

donde $V_{\rm c}$ es el esfuerzo de corte en la columna ubicada por encima del nudo, $d_{\rm b1}$ y $d_{\rm b2}$ representan la altura

total de las vigas que llegan al nudo y M_1 y M_2 los momentos flectores en los extremos de dichas vigas

Fig. 3-11. Esfuerzos en el panel nodal, (a)M, N y V, y (b) esfuerzos donde los momentos han sido reemplazados por cuplas equivalentes.

Fig. 3-12. Geometría de la conexión viga-columna.

Desde el punto de vista práctico, la Ecuación 3-3 puede simplificarse ignorando el corte V_c debido a que disminuye la fuerza requerida en el panel y es despre-

ciable frente a los otros términos. Además, en los casos usuales ambas vigas son iguales, de modo que:

$$V_p \approx \frac{\Sigma M}{(d_b - t_f)} \tag{3-4}$$

donde $\Sigma M = M_1 + M_2$ es el momento total en la vigas.

Hasta la década de 1990 los nudos se diseñaban para permanecer en rango elástico de modo que se adoptaba $M_1 = M_2 = M_p$, con el objeto de obtener "paneles fuertes" y concentrar las deformaciones plásticas en las rótulas de vigas. Estudios experimentales posteriores mostraron que la fluencia controlada en el panel nodal puede disipar energía en forma adecuada. Sin embargo, se ha comprobado que la fluencia del panel disminuye el factor de sobrerresistencia Ω_o en comparación con pórticos que presentan nudos con paneles fuertes. Además, la rigidez lateral se reduce significativamente por la deformabilidad del panel nodal y no puede calcularse en forma precisa si se emplean modelos basados en elementos de barras con nudos rígidos.

Actualmente, las especificaciones AISC indican que la resistencia a corte requerida en el panel, como mínimo, debe determinarse a partir de la suma de los momentos en las caras de la columna, considerando la proyección de los momentos plásticos esperados respecto de las caras de las columnas. Es decir, que al aplicar la Ecuación 3.4 debe considerarse $\Sigma M = \Sigma M_{p,exp}$, donde M_{p,exp}= R_y M_p. Las especificaciones ANSI/AISC 358-10 (AISC, 2010c) indican que debe incluirse también un factor C_{pr}, el cual considera el endurecimiento por deformación y otros aspectos propios del tipo de conexión, de modo que M_{p,exp}= C_{pr} R_y M_p. Mediante la aplicación de este criterio se busca controlar los problemas de inestabilidad y otro efectos negativos por deformación plástica excesiva del panel nodal (ver Figura 3.13). El factor C_{pr} no debe ser, en general, mayor que 1.20 y usualmente se adopta igual a 1.15. No obstante, pueden presentarse excepciones para alguna conexión en particular y, por lo tanto, deben adoptarse los valores que se surgen del proceso de precalificación.

Fig. 3-13. Deformación del panel nodal y los efectos

por deformación excesiva (INPRES-CIRSOC, 2000).

La resistencia de diseño, $\varphi_v V_n$, donde $\varphi_v = 1.0$, debe ser mayor que la resistencia requerida, para el caso del método LRFD. Es importante notar que en este caso se asume que el factor de resistencia es igual a 1.0 debido a que la resistencia requerida se determina a partir de conceptos del diseño por capacidad. La resistencia nominal del panel nodal sometido a corte, V_n, puede determinarse a partir de las siguientes expresiones (AISC 2010b):

a. Cuando el efecto de la deformación del panel no es considerado en el análisis de la estabilidad del pórtico:

• Si
$$P_r \le 0.4 P_c$$
:
 $V_n = 0.60F_y d_c t_p$ (3-5a)
• Si $P_r > 0.4 P_c$:
 $V_n = 0.60F_y d_c t_p \left(1.4 - \frac{P_u}{P_y}\right)$ (3-5b)

b. Cuando la estabilidad del pórtico y el efecto de la deformación plástica del panel nodal son considerados en el análisis (Krawinkler et al., 1975):

• Si
$$P_r \le 0.75 P_c$$
:
 $V_n = 0.60 F_y d_c t_p \left(1 + \frac{3 b_{cf} t_{cf}^2}{d_b d_c t_p} \right)$ (3-5c)

• Si P_r > 0.75 P_c: $V_{n} = 0.60F_{y} d_{c} t_{p} \left(1 + \frac{3 b_{cf} t_{cf}^{2}}{d_{b} d_{c} t_{p}}\right) \left(1.9 - \frac{1.2 P_{u}}{P_{y}}\right)$ (3-5d)

donde $0.6F_y$ representa la tensión de fluencia por corte, P_r es la carga axial requerida, P_c = 0.6 P_y =0.6 F_y A_g, t_p es el espesor total del panel nodal, incluyendo placas de refuerzo (caso contrario t_p=t_{cw}) y los restantes parámetros geométricos se definen en la Figura 3-12. Las Ecuaciones 3-5 representan la resistencia nominal a corte, mediante la consideración de la fluencia del alma (representada por el área d_c t_p) más la contribución de las alas de las columnas, asumiendo comportamiento elástico.

Para incrementar la resistencia a corte se pueden disponer placas de refuerzo (*doubler plates*) con lo cual se incrementa t_p y por ende la resistencia nominal. Como se indica en la Figura 3-14, se pueden colocar una o dos placas mediante soldaduras de penetración completa o de filete. Es importante destacar que el detalle de la Figura 3-14(c) evita realizar soldaduras en las áreas-k, con las ventajas que ello implica (ver Sección 2.8.4).

Finalmente, es necesario verificar que el espesor mínimo de las placas que componen el panel nodal, t, cumpla con la condición indicada por la Ecuación 3.6 para prevenir el pandeo local:

$$t \ge \frac{d_z + w_z}{90} \tag{3-6}$$

En esta ecuación empírica d_z y w_z representan las dimensiones del panel nodal, como se ilustra en la Figura 3-12.

Fig. 3-14. Placas nodales de refuerzo con soldadura de penetración completa o soldadura de filete.

En el caso de que se usen placas de refuerzo en el panel unidas al alma de la columna mediante soldadura de tapón se podrá considerar el espesor total $(t = t_p)$ para verificar la Ecuación 3-6. Se recomienda colocar las soldaduras de tapón de modo de dividir la placa en paneles rectangulares que cumplen con la Ecuación 3-6. Si bien podría considerarse que el uso de rigidizadores diagonales representa una solución válida para reforzar y restringir las deformaciones en el panel nodal, esta alternativa no ha sido completamente validada en forma experimental, de modo que no se incluye en las especificaciones AISC.

3.2.5 Requerimientos para vigas y columnas. Relación anchura-espesor

Las vigas y columnas de pórticos especiales deben verificar las condiciones establecidas para miembros de alta ductilidad. De modo que las secciones de los miembros de estos pórticos deben cumplir con las relaciones anchura-espesor límite indicadas en la Tabla D1.1 de ANSI/AISCE 341-10 para controlar los problemas de pandeo local. Estos valores límites se encuentran tabulados para elementos rigidizados y no rigidizados, considerando además el tipo se solicitación actuante en los elementos. Para el caso de secciones I de acero tipo ASTM A-36, los valores límites implican

que la relación anchura-espesor para el ala debe ser menor que 8.5 y para el alma menor que 89.1 a 42.3, según sea el valor de la carga axial de compresión (ver Sección 1.4.3 de este texto).

Las vigas de los pórticos especiales pueden diseñarse como miembros compuestos en combinación con una losa de hormigón armado para resistir cargas gravitatorias.

Los extremos de las vigas, donde se espera la formación de rótulas plásticas, deben tratarse como zonas protegidas. La longitud de dichas zonas se define a partir de lo indicado por el reglamento ANSI/AISC 358-10 o según lo indicado en la precalificación de la conexión. Usualmente, la longitud de la zona protegida se extiende desde la cara de la columna hasta una distancia igual a la mitad de la altura de la sección medida a partir del punto de la rótula plástica.

3.2.6 Relación entre la resistencia flexional de columnas y vigas

A los efectos de asegurar el mecanismo de viga débilcolumna fuerte en el diseño de los pórticos especiales, se debe cumplir con la siguiente relación, basada en conceptos del diseño por capacidad:

$$\frac{\sum M_{pc}^{*}}{\sum M_{pb}^{*}} > 1.0 \tag{3-7}$$

donde el numerador representa la suma de los momentos plásticos en las columnas por encima y debajo del nudo, considerando la reducción por efecto de la carga axial, y el denominador representa la suma de la resistencia flexional esperada en las vigas, proyectada en la cara de la columna. Los momentos flectores definidos previamente se determinan como:

$$M_{pc}^{*} = Z_{c} (F_{yc} - P_{uc} / A_{g})$$
(3-8)

$$M_{pb}^{*} = 1.1R_{y}F_{yb}Z_{b} + M_{uv}$$
(3-9)

donde Z_c y Z_b son los módulos plásticos de columna y viga, respectivamente, P_{uc} es la resistencia requerida a compresión de la columna y M_{uv} es el momento adicional en la viga debido a la amplificación producida por corte desde la rótula plástica hasta el eje de la columna. En los casos en que se usan conexiones con secciones de viga reducida, se debe considerar en el cálculo del momento el módulo plástico correspondiente a la sección reducida.

La condición de resistencia definida por la Ecuación 3-7 no es aplicable para en los siguientes casos:

- Columnas con P_u > 0.3P_y en edificios de 1 piso, o en el piso superior de edificios de varios niveles.
- Columnas con $P_u > 0.3P_y$ que además cumplen requisitos especiales de resistencia a corte según se detalla en la Sección E3.4a de ANSI/AISC 341-10.

 Columnas de cualquier piso del edificio donde se verifica que la relación entre la resistencia a corte disponible y la resistencia a corte requerida es 50% mayor que en el piso ubicado por encima.

3.2.7 Restricción lateral en conexiones

Las columnas deben contar con arriostramientos destinados a restringir la rotación fuera del plano del pórtico, particularmente cuando se espera que se desarrollen deformaciones plásticas en el panel nodal o en sus adyacencias. Se distinguen dos casos:

- a. Conexiones arriostradas: los nudos viga-columna usualmente están restringidos lateralmente por la presencia de losas, techos o diafragmas horizontales. Las alas de la columna en los nudos requieren soporte lateral sólo a nivel del ala superior de las vigas en los casos en que las almas de vigas y columna son coplanares y que las columnas permanecen elásticas fuera del panel nodal. Se considera que se cumple esta última condición cuando la relación de resistencia entre columnas y vigas definida por la Ecuación 3-7 es mayor que 2.0. Recomendaciones previas indicaban un valor de 1.25 para este límite. Sin embargo, resultados de análisis nolineales indican que, bajo terremotos severos, se pueden formar rótulas plásticas en las columnas con valores de la relación de resistencia superiores a 1.25, razón por lo cual se aumentó ese límite. Cuando no puede asegurarse que las columnas permanecerán elásticas fuera del panel nodal, deben restringirse lateralmente las alas de la columna a nivel del ala superior e inferior de las vigas. La restricción lateral se logra mediante la losa de piso, diafragmas horizontales, riostras o indirectamente con rigidizadores. Los elementos usados para restringir lateralmente las columnas deben diseñarse para resistir una fuerza igual al 2% de la resistencia del ala de la viga, esto es 0.02 $F_v b_f t_{bf}$.
- **b.** Conexiones no arriostradas: este es un caso poco frecuente en estructuras de edificios, para el cual se requiere que la columna tenga una esbeltez L/r<60 y se deben cumplir con condiciones adicionales de resistencia (según se detalla en la Sección E3.4c de ANSI/AISC 341-10).

3.2.8 Restricción lateral en vigas

Las alas superior e inferior de las vigas de pórticos deben arriostrarse lateralmente, o bien la sección transversal deber arriostrarse torsionalmente. La separación máxima entre puntos de arriostramiento es $L_b = 0.086$ r_y E/F_y, donde r_y es el radio de giro de la viga respecto al eje vertical. Se ha demostrado que esta condición es suficiente para asegurar que puede desarrollarse una distorsión de piso de 0.04 rad. Adicionalmente deben disponerse arriostramientos laterales en zonas de con-

centración de esfuerzos, cambios de sección y zonas de localización de las rótulas plásticas

Los elementos de arriostramiento lateral deben diseñarse para cumplir con los requerimientos de miembros de alta ductilidad. De modo que deben aplicarse las condiciones de resistencia y rigidez definidas en el Apéndice 6 de las especificaciones ANSI/AISC 360-10, cuyos aspectos principales se presentan en la Sección 2.8.5 de este texto.

3.3 PÓRTICOS NO ARRIOSTRADOS INTER-MEDIOS

3.3.1 Aspectos generales

Los pórticos no arriostrados intermedios son los que presentan capacidad de disipación de energía moderada y, acorde a ello, se diseñan con un factor de modificación de respuesta menor que los pórticos especiales (R=4.5 en los reglamentos norteamericanos). Se espera que las deformaciones inelásticas se desarrollen principalmente en las vigas.

Las especificaciones sísmicas AISC vigentes indican los requisitos propios que deben cumplir los pórticos intermedios, que en este caso son menos estrictos que para los pórticos especiales. Se requiere también del uso de conexiones precalificadas y los extremos de las vigas se consideran como zonas protegidas.

3.3.2 Conexiones viga-columna

Las conexiones viga-columna de pórticos no arriostrados intermedios que forman parte del sistema sismorresistente de una construcción deben cumplir con las siguientes condiciones:

- La conexión debe ser capaz de soportar las rotaciones plásticas correspondiente a un nivel de distorsión de piso total de 0.02 radianes.
- La capacidad a flexión de la conexión, medida en la cara de la columna, debe ser como mínimo 0.8 M_p de la viga conectada para un nivel de distorsión de piso de 0.02 radianes.
- La resistencia a corte requerida de la conexión, por efecto sísmico, debe determinarse a partir de la Ecuación 3.1 (caso de pórticos especiales), sin embargo se permite considerar la resistencia de corte requerida si se justifica mediante el análisis. La resistencia de corte requerida no debe exceder el esfuerzo de corte resultante de aplicar las combinaciones especiales de carga usando el efecto sísmico amplificado (esto es considerando el factor de sobrerresistencia Ω_0).

En las conexiones de pórticos intermedios deben considerarse como soldaduras de demanda crítica los mismos casos que los indicados para los pórticos especiales.

3.3.3 Placas de continuidad

Las placas de continuidad en pórticos no arriostrados intermedios deben cumplir con las mismas condiciones que en el caso de pórticos especiales (ver Sección 3.2.3)

3.3.4 Panel nodal

No se requieren verificaciones o criterios adicionales para los paneles nodales de pórticos intermedios, salvo lo indicado como en las especificaciones ANSI/AISC 360-10 para edificios comunes.

3.3.5 Relación anchura-espesor para vigas y columnas

Las vigas y columnas de pórticos intermedios deben diseñarse con las condiciones establecidas para miembros de ductilidad moderada. De modo que las secciones deben cumplir con las relaciones anchura-espesor límite indicadas en la Tabla D1.1 de ANSI/AISCE 341-10.

3.3.6 Restricción lateral en vigas

Las alas superior e inferior de las vigas de pórticos deben arriostrarse lateralmente, con una separación máxima entre puntos de apoyo de $L_b = 0.17 r_y E/F_y$, donde r_y es el radio de giro de la viga respecto al eje vertical. Esta separación límite es aproximadamente el doble que la indicada para pórticos especiales. Los elementos de restricción lateral deben diseñarse para cumplir con condiciones de resistencia y rigidez definidas en el Apéndice 6 de ANSI/AISC 360-10. Además, como miembros con ductilidad moderada, se requieren que ambas alas estén lateralmente arriostradas o que se empleen arriostramientos torsionales.

3.4 PÓRTICOS NO ARRIOSTRADOS ORDINA-RIOS

3.4.1 Aspectos generales

Los pórticos no arriostrados ordinarios o convencionales se diseñan para desarrollar rotaciones plásticas limitadas, menores que las esperadas en pórticos especiales o intermedios. Por esta razón, muchas de las restricciones y condiciones descriptas previamente no se aplican a los pórticos ordinarios. El factor de modificación de respuesta es reducido debido a la menor capacidad de disipar energía que presenta este tipo de pórticos. Los reglamentos norteamericanos adoptan R=3.5.

3.4.2 Conexiones viga-columna

Las conexiones viga-columna deben realizarse con soldadura o pernos de alta resistencia. Estas conexiones pueden ser completamente *restringidas (fully restrained*, FR) o parcialmente restringidas (*partially restrained*, PR). Su diseño se basa en la verificación de resistencia mediante procedimientos analíticos y detalles constructivos indicados en las especificaciones, de modo que no es necesaria la validación experimental.

Las conexiones totalmente restringidas son aquellas que pueden transferir el momento flector con una rotación despreciable entre los componentes conectados. Cuando estas conexiones forman parte del sistema sismorresistente, se permiten tres alternativas para determinar la resistencia requerida:

- La resistencia requerida a flexión se determina a partir de la resistencia esperada como 1.1 Ry Mp y la resistencia requerida a corte se determina según lo indicado para la Ecuación 3-1, considerando la luz libre de la viga ($L_h = L_{cf}$).
- La conexión se diseña para resistir el momento y corte máximo que el sistema puede transferir a la conexión, considerando los efectos de la sobrerresistencia del material y el endurecimiento por deformación. Existen distintos casos donde la resistencia de las columnas o la resistencia de las fundaciones para resistir el momento de vuelco pueden limitar el momento máximo en las vigas y, consecuentemente, no puede desarrollarse su resistencia real a flexión.
- La conexión se diseña de acuerdo a criterios requeridos para pórticos no arriostrados especiales o intermedios, o bien se satisfacen criterios adicionales indicados en la Sección E1.6b(c) de ANSI/AISC 341-10

Las conexiones parcialmente restringidas son aquellas que presentan capacidad para transferir momento flector, pero se produce una rotación no despreciable debido a la flexibilidad de los elementos de unión. Este tipo de conexiones están permitidas en pórticos ordinarios si se cumplen los siguientes requisitos:

- La conexión debe diseñarse para el máximo momento y corte resultante de las combinaciones de carga. Para la resistencia a corte se aplica también la Ecuación 3-1, considerando la luz libre de la viga $(L_h = L_{cf})$ y que el momento de plastificación es igual al momento nominal $(M_p = M_n)$.
- La resistencia nominal a flexión no debe ser menor que el 50% del momento de plastificación, M_p, de la viga o columna conectadas (se considera el valor menor).
- La rigidez y resistencia de la conexión debe ser considerada en el diseño, incluyendo el análisis de la estabilidad global del pórtico.

Los cordones de penetración completa en soldaduras que conectan las alas de viga a la columna deben considerarse como soldaduras de demanda crítica.

3.4.3 Placas de continuidad

Las especificaciones sísmicas indican que en conexiones totalmente restringidas, en las que las alas de las vigas se sueldan directamente o mediante placas de conexión a las alas de las columnas, se deben disponer placas de continuidad si se cumple que :

$$t_{cf} < 0.54 \sqrt{b_{bf} t_{bf} \frac{F_{yb}}{F_{yc}}} \quad o$$

$$t_{cf} < \frac{b_{bf}}{6}$$
(3-12)

El espesor de las placas de continuidad debe determinarse según el siguiente criterio:

- En nudos exteriores el espesor debe ser como mínimo la mitad del espesor del ala de la viga.
- En nudos interiores el espesor de las placas deber ser como mínimo igual al espesor mayor de las alas de las vigas que llegan al nudo.

3.5 COMPARACIÓN DE LOS REQUERIMIEN-TOS DE DISEÑO

En las secciones previas se presentaron los requerimientos de diseño para las tres categorías de pórticos no arriostrados. En Tabla 3-2 se presenta un resumen de dichos requerimientos a los efectos de una comparación entre los distintos tipos de pórticos.

Requerimiento	Categoría			
	Especial	Intermedio	Ordina- rio	
Factor R	8	4.5	3.5	
Capacidad de rotación plástica en rótulas	0.03	0.01		
Distorsión de piso en las conexiones	0.04	0.02		
Conexiones viga- columna	Precalifi- cada o verificación experimen- tal	Precalifi- cada o verificación experimen- tal	No	
Zonas protegidas	Extremo de viga	Extremo de viga	No	
Verificación panel nodal	Si	No	No	
Relación anchura- espesor	λ_{hd}	λ_{md}	No	
Relación entre la resistencia flexio- nal de columnas y vigas	Si	No	No	
Restricción lateral en nudos	Si	No	No	
Restricción lateral en vigas	Si L _b = 0.086 r _y E/F _y	Si L _b = 0.17 r _y E/F _y	No	

Tabla 3-2. Requerimientos de diseño para pórticos no arriostrados

Resulta evidente de la observación de la Tabla 3-2 que las categorías que se diseñan con un factor de modificación de respuesta, R, mayor (esto implica menores resistencias requeridas en los componentes del sistema) presentan verificaciones y requerimientos de detalles más estrictos para asegurar una mejor capacidad de disipación de energía.

3.6 CONEXIONES VIGA-COLUMNA

Como consecuencia del terremoto de Northridge de 1994 (ver Sección 1.4.5) se incrementaron significativamente los requisitos que deben cumplir las conexiones vigas-columnas en estructuras dúctiles de acero con el objeto de evitar las fallas observadas luego de ese terremoto. Para el diseño de las nuevas conexiones para estructuras dúctiles se consideran dos criterios principales:

- Re-ubicar la rótula plástica en las vigas alejándolas de la cara de las columnas (ver Figura 3-15).
- Incrementar la relación entre la capacidad flexional de la conexión y el momento de plastificación de la viga.

Fig. 3-15. Ubicación de rótulas plásticas en vigas con distinto tipo de conexiones.

Las investigaciones experimentales y analíticas realizadas permitieron desarrollar y validar distintas soluciones, las cuales pueden agruparse en dos categorías: (i) aquellas en las que se refuerza la conexión mediante placas o rigidizadores con el objeto de aumentar su capacidad resistente y (ii) otras en donde, deliberadamente, se reduce la sección de la viga (realizando cortes en las alas, por ejemplo) y por ende el momento plástico de la misma. En las conexiones reforzadas la rótula plástica se produce a una distancia s (ver Figura 3-15) medida a partir del borde de las placas o cartelas de refuerzo; resultados experimentales indican que s varía entre 1/3 y 1/4 de la altura total de la viga d_b (Bruneau et al, 1998). En el caso de conexiones con sección de viga reducida la rótula plástica se ubica en correspondencia con el centro de la zona reducida. En distintas verificaciones, como por ejemplo al determinar la relación entre la resistencia flexural de columnas y vigas, se requiere calcular el momento flector en la cara de la columna, $M_f = M_p + x V$, de acuerdo con el diagrama de cuerpo libre indicado en la Figura 3-15 (b).

Es importante aclarar que la configuración de rótulas plásticas ilustrada en la Figura 3-15 es válida en pórticos donde el efecto de la carga gravitatoria sobre las vigas es reducido. Puede considerarse, aproximadamente, que esta situación se cumple cuando la demanda flexional en la viga debida a la carga gravitatoria es menor que el 30% del momento plástico. (FE-MA 2000a). Caso contrario, la presencia de cargas gravitatorias elevadas puede modificar la posición de las rótulas plásticas y en casos extremos podría cambiar el mecanismo de deformación plástica o mecanismo de colapso. Es por ello que resulta necesario realizar un análisis detallado para determinar la posición de las rótulas y el tipo de mecanismo esperado.

En las secciones siguientes se presenta, a modo de ejemplo, la descripción general de varios tipos de conexiones. Para una descripción más detallada y procedimientos de diseño el lector puede consultar las recomendaciones FEMA 350 (FEMA, 2000a), FEMA 355D (FEMA, 2000f) y AISC 358 (AISC, 2010c). En particular, en el documento FEMA 350 las conexiones precalificadas se agrupan en: (i) conexiones soldadas totalmente restringidas, (ii) conexiones apernadas totalmente restringidas, (iii) conexiones parcialmente restringidas y (iv) conexiones con patente comercial. Algunas de estas conexiones precalificadas son válidas solamente para pórticos no arriostrados ordinarios. El documento ANSI/AISC 358-10 describe seis tipos de conexiones precalificadas para su uso en pórticos especiales e intermedios:

- Conexión "viga reducida" (RBS).
- Conexión con placa de extremo extendida, rigidizada y no rigidizada.
- Conexión con placa apernada al ala (BFP).
- Conexión "ala soldada no reforzada-alma soldada"(WUF-W).
- Conexión "Kaiser" apernada (sistema patentado).
- Conexión "ConXtech ConXL" (sistema patentado).

3.6.1 Conexiones reforzadas

Se han desarrollado numerosos detalles para conexiones reforzadas mediante placas triangulares o rectangulares dispuestas en las alas de la viga, rigidizadores o cartelas de distintas formas, usando como medios de unión pernos, cordones de soldadura o una combinación de ambos. Algunas de las conexiones propuestas se encuentran protegidas por patentes comerciales.

Las Figuras 3-16 y 3-17 muestran cuatro alternativas para conexiones que combinan pernos en la unión del alma, para transferir el corte de la viga, y uniones soldadas en las alas de la viga. En todos los casos se refuerza la conexión viga-columna y se desplaza la rótula plástica desde el extremo hacia el interior de la viga. En el caso particular de la Figura 3-16 (a) la placa de refuerzo inferior es de forma rectangular para servir de apoyo a la viga durante el montaje y facilitar la soldadura desde arriba hacia abajo, mientras que la placa superior es de forma trapezoidal. Este tipo de conexión puede construirse con la unión de alma soldada (en lugar de usar pernos) con lo que puede reducirse el espesor de las placas de refuerzo en las alas.

Fig. 3-16. Ejemplos de reforzadas (Bruneau et al., 1998).

Las conexiones con rigidizadores y cartelas triangulares, como la mostrada en la Figura 3-17 (a) y (b) pueden usarse no solo para construcciones nuevas sino también para la rehabilitación de pórticos existentes. Los resultados experimentales indican que las cartelas triangulares son las más efectivas y permiten desarrollar grandes rotaciones plásticas, si bien se han probado también otras configuraciones, por ejemplo, con cartelas rectangulares. En ciertas situaciones resulta conveniente eliminar el uso de la cartela o rigidizadores en el ala superior, con el objeto de facilitar la construcción de los entrepisos. Estos casos especiales deben verificarse experimentalmente o bien deben utilizarse conexiones precalificadas.

Fig. 3-17. Ejemplos de reforzadas (Bruneau et al., 1998)

Se han desarrollado también conexiones similares a las indicadas en la Figura 3-17, pero usando pernos como único medio de unión en obra, con lo cual se tiene la ventaja de agilizar el proceso de montaje y evitar las soldaduras en esa etapa de la construcción.

Alternativamente, la Figura 3-18 ilustra el caso de conexiones totalmente apernadas, las cuales emplean

una placa que se suelda en taller al extremo de la viga (Murray y Summer, 2003). La principal ventaja de esta conexión es la rapidez del montaje y el hecho de evitar totalmente la soldadura en obra. Como desventaja puede mencionarse la posibilidad de alabeo de la placa de extremo por la soldadura, la baja tolerancia a errores en la longitud de la viga y el eventual desarrollo del efecto de palanca (*prying forces*) debido a los esfuerzos de tensión en los pernos. El reglamento ANSI/AISC 358-10 incluye conexiones precalificadas de este tipo con y sin rigidizadores de la placa de extremo de viga.

Fig. 3-18. Conexiones con placa de extremo extendida, (a) con rigidizadores y 8 pernos, (b) con rigidizadores y 16 pernos, y (c) sin rigidizadoress y 8 pernos (AISC 2010c).

Debido al requerimiento reglamentario de usar conexiones precalificadas, se han desarrollado en EEUU varios sistemas protegidos por patentes comerciales, los cuales se han aplicado en forma creciente en la última década. En la Figura 3-19 se muestra esquemáticamente una conexión con placas laterales que se incluye en las recomendaciones FEMA 350 (FEMA 2000a), junto con la imagen de su aplicación a un edificio. En este caso no existe contacto entre el ala de la columna y el extremo de la viga, de modo que se evita el complejo estado triaxial de tensiones que se origina cuando se suelda en dicha zona. La transferencia de los esfuerzos se realiza mediante dos placas laterales, las cuales dan el nombre a esta conexión (side plate connection).

Fig. 3-19. Conexión con placas laterales.

En la Figura 3-20 se muestra un sistema patentado denominado "articulación-fusible" (*pin-fuse joint*), la cual cuenta con dos placas curvas (una vinculada al extremo de la viga y la otra al ala de la columna) que se vinculan entre si mediante pernos por deslizamiento crítico. Entre las placas curvas se dispone una delgada placa de bronce. La conexión se comporta como totalmente restringida ante acciones de viento y sismo de mediana intensidad. Sin embargo, ante un sismo severo las superficies curvas pueden deslizar, permitiendo el giro de la articulación y, de esa forma, la disipación de energía por fricción.

Otra opción de conexión protegida por patente comercial, en este caso con pernos como medio de unión, se presenta en la Figura 3-21. La conexión entre las alas de la viga y el ala de la columna se realiza mediante dos piezas especiales de acero de alta resistencia y se denomina en inglés *Kaiser bolted bracket connection*. El sistema de conexión está precalificado para ser usado en pórticos especiales (con limitaciones cuando se usan losas de hormigón) e intermedios.

Fig. 3-20. Conexión "articulación-fusible" (Cordova y Hamburger, 2011).

Fig. 3-21.Conexión "Kaiser" con soportes de alta resistencia apernados (a) esquema (AISC, 2010c) e imagen de una conexión real (Cordova y Hamburger, 2011).

Finalmente, en la Figura 3-22 se presenta la conexión patentada por la empresa ConXtech para el caso de columnas formadas por tubos cuadrados o secciones cajón, rellenos de hormigón. Sobre la columna, se monta en obra una anilla de alta resistencia que permite la conexión con las vigas que llegan al nudo (las cuales deben tener todas la misma altura nominal). El sistema puede usarse con vigas de sección reducida (como se indica en la Figura 3-22), o bien con vigas sin reducción, según los requerimientos del caso. Una ventaja del sistema es que las partes integrantes de la anilla de sujeción se sueldan totalmente en taller a los extremos de cada viga y en las esquinas de la columna y luego en obra se completa la conexión usando solamente pernos.

Fig. 3-22. Conexión "ConXtech ConXL" (AISC, 2010c).

3.6.2 Conexiones con viga de sección reducida

En las conexiones con viga de sección *reducida (reduced beam section, RBS, connection)*, se realiza un corte en las alas del perfil en la zona cercana a la conexión, según el detalle que se muestra en la Figura 3-23. De esta forma se logra que la fluencia se concentre en la zona de sección reducida, con un momento de plastificación menor que el propio de la viga.
La reducción c a cada lado del ala, ver Figura 3-23, se adopta usualmente igual a 0.2 b_f y no debe exceder 0.25 b_f . El valor de a varía entre 0.5 y 0.75 b_f y el de b entre 0.65 y 0.85 b_f . La conexión con la columna se realiza mediante soldaduras de penetración completa en las alas, mientras que el alma de la viga se vincula mediante soldadura o pernos. En este caso no es necesario reforzar la conexión debido a que se ha reducido la capacidad resistente (momento de plastificación) de la viga.

Las conexiones con viga de sección reducida representan una buena solución estructural (basada en principios de diseño por capacidad), que permite realizar conexiones de rápida ejecución, con bajos requerimiento de mano de obra. Esta solución es conveniente desde el punto de vista económico en países, como Estados Unidos de América, donde el costo de la mano de obra es importante en relación al costo del acero.

Fig. 3-23. Conexión con viga de sección reducida (AISC, 2010).

3.6.3 Otras conexiones

Previo al terremoto de Northridge, el tipo de conexión viga-columna más frecuente consistía en soldar las alas de la viga directamente a la columna, mediante cordones de penetración completa, mientras que el alma de la viga se conecta con pernos usando una planchuela adicional soldada al ala de la columna. Este tipo de conexión, conocida como "pre-Northridge", demostró un inadecuado comportamiento, debido fundamentalmente a la ocurrencia de fracturas frágiles, las cuales se produjeron a niveles bajos de demanda plástica y, en algunos casos, aún en rango elástico. En la mayoría de los casos, las fracturas se iniciaron en los cordones de penetración completa que conectaban el ala de la viga con la columna. Una vez iniciadas, las fracturas se propagaban en formas diversas, afectando distintas partes de la conexión.

Actualmente es posible utilizar una conexión similar, pero con ciertos detalles especiales que mejoran su comportamiento, denominada "conexión ala soldada no reforzada-alma soldada" (welded unreinforced flangewelded web moment connection, WUF-W), Figura 3-24. Es importante notar que se requiere el uso del detalle indicado en la Figura 3-7 para los agujeros de acceso de soldadura. Los pernos sirven como elementos auxiliares para el montaje, mientras se realizan en obra las soldaduras en las alas y alma de la viga. Esta conexión ha sido verificada experimentalmente, por lo cual la recomendación FEMA 350 la incluye como conexión precalificada para pórticos no arriostrados ordinarios y especiales. Posteriormente, el documento AN-SI/AISC 358-10 también incluyó esta conexión como precalificada para pórticos intermedios y especiales. La principal ventaja de esta conexión es su sencillez constructiva y el costo reducido frente a otro tipo de conexiones, particularmente las reforzadas.

Fig. 3-24. Conexión ala soldada no reforzada-alma soldada.

La recomendación FEMA 350 incluye una conexión similar a la descripta en la Figura 3-24, con la diferencia que la unión del alma es apernada, denominada "conexión ala soldada no reforzada-alma apernada (*welded unreinforced flange–bolted web moment connection, WUF-B*). Esta conexión está precalificada para pórticos ordinarios.

Finalmente, se presenta en la Figura 3-25 el esquema de una conexión similar a la descripta previamente, sin embargo la diferencia radica en que se realizan dos ranuras horizontales en el alma de la viga (*slotted web* connection, SW), con el objeto de separar las alas del alma en la zona de la conexión. Los resultados de análisis mediante el método de los elementos finitos y datos experimentales medidos mediante bandas extensométricas (strain gauges) indican que se desarrollan grandes gradientes de tensión y deformación en el extremo de la viga, tanto en la dirección horizontal como vertical. Estos estudios muestran también que un porcentaje significativo (de hasta el 50%) del esfuerzo de corte vertical en la viga se trasmite por las soldaduras de alma. Por lo tanto, las ranuras del alma permiten modificar significativamente el complejo estado tensional en esa zona, aliviando la concentración de tensiones en el extremo. Las alas resisten el momento flector, casi en su totalidad, mientras que el esfuerzo de corte es transferido a través del alma. Además, se reducen las tensiones residuales por soldadura, debido que las alas de la viga no están restringidas por el alma. La conexión con ranuras en el alma está protegida por una patente comercial.

Fig. 3-25. Conexión con ranuras en el alma (FEMA, 2000a).

La mayoría de los tipos de conexiones descriptas previamente son aplicables para las situaciones más usuales, en las que las vigas y columnas del pórtico están formadas por secciones I. En los casos en los que se usan otros tipos de secciones, por ejemplos columnas tubulares o con sección cajón, deben aplicarse los criterios generales para el diseño de conexiones y seguir el procedimiento de precalificación requerido por las especificaciones (Chen et al., 2006). Al respecto, resulta interesante describir algunas conexiones usadas en Japón para estos casos. La Figura 3-26 muestra tres conexiones diferentes para el caso de columnas tubulares y sección cajón. En el caso (a), la columna se corta en la zona de la conexión para soldar en taller dos placas horizontales, que luego se conectarán con las vigas. En el caso (b), las placas se disponen en el interior de columnas, las cuales necesariamente están formadas

por una sección cajón armada, mientas que en el caso (c) las placas rodean la columna y se sueldan a la misma en taller.En los casos (a) y (c) la columna puede ser un tubo de sección cuadrada o rectangular.

Fig. 3-26. Conexiones usadas en Japón para columnas tubulares o de sección cajón, (a) con placa a través de la columna, (b) con placa interior, y (c) con placa alrededor del nudo (Bruneau et al., 2010).

3.6.4 Conexiones precalificadas ANSI/AISC 358

La especificación ANSI/AISC 358-10, Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications (AISC, 2010c), indica los criterios de diseño, detallado y fabricación para conexiones precalificadas. Los miembros a conectar deben cumplir con ciertos requerimientos para asegurar que se pueden desarrollar las deformaciones inelásticas necesarias. En el caso particular de vigas de sección armada se requiere que las almas y las alas se conecten con juntas soldadas de penetración completa y que se agregue un par de cordones de refuerzo desde el extremo de la viga hasta una distancia no menor que la altura de la viga más allá de la zona de rótula pástica. Para las columnas armadas se contemplan cuatro casos, según se ilustra en la Figura 3-27, y se especifican requermientos particulares para cada uno de ellos.

Fig. 3-27. Tipos de secciones para columnas armadas.

A modo de resumen, en la Tabla 3-3 se presentan los siete tipos de conexiones precalificadas que considera el AISC 358-10, donde se indica el nombre de la conexión, con sus siglas en ingles entre paréntesis, y el tipo de pórticos para el cual es aplicable. Las características de estas conexiones, en general, fueron descripas en las secciones anteriores.

Tabla 3-3.	Conexiones a	momento	precalificadas
	(AISC.	2010c)	

Tipo de conexión	Sistema			
Viga de sección reducida (RBS)	SMF, IMF			
Conexión apernada con chapa de extremo sin rigidizar (BUEEP)	SMF, IMF			
Conexión apernada con chapa de extremo rigidizada (BSEEP)	SMF, IMF			
Conexión apernada con chapas de ala (BFP)	SMF, IMF			
Conexión de ala soldada sin reforzar-alma soldada (WUF-W)	SMF, IMF			
Conexión Kaiser con soportes apernados (KBB)	SMF, IMF			
Conexión a momento ConXtech ConXL (ConXL)	SMF, IMF			

Capítulo 4 Pórticos arriostrados concéntricamente

4.1 INTRODUCCIÓN

Los pórticos de acero con arriostramientos concéntricos representan una solución estructural conveniente para suministrar resistencia y rigidez lateral en edificios de baja y mediana altura. Este tipo de estructura se caracteriza porque los ejes centrales de los miembros componentes se cortan en un punto, formando así una estructura reticulada. Es por ello que las acciones laterales de viento y sismo inducen, principalmente, esfuerzos axiales en los miembros del pórtico arriostrado. El sistema se destaca por su elevada rigidez lateral, la cual permite controlar adecuadamente los desplazamientos laterales para cumplir los requerimientos de diseño.

Los pórticos arriostrados comenzaron a usarse en el siglo XIX para puentes y construcciones industriales y a comienzos del siglo XX su aplicación se extendió a edificios. Inicialmente, una de las configuraciones más usada fueron los arriostramientos con tensores en X (también llamados "contravientos" por la función principal que cumplían). En la década de 1960 se desarrollaron e implementaron otros sistemas de arriostramientos y, a partir de las investigaciones realizadas, se formularon criterios de diseño sismorresistentes más detallados que favorecieron su uso generalizado para edificios de baja y mediana altura, particularmente en USA después del terremoto de San Fernando de 1971. El criterio fundamental de diseño se basaba en limitar la ocurrencia del pandeo global en las riostras comprimidas, con lo cual la estructura no tiene posibilidades de disipar energía en forma significativa. Los ensavos cíclicos mostraron que el sistema puede disipar energía luego del pandeo global de las riostras, siempre y cuando se controlen otros modos de falla frágil como el pandeo local y la fractura de las conexiones. Es decir que se comprobó experimentalmente que, mediante un diseño adecuado, se puede lograr una respuesta dúctil y estable, con buena capacidad de disipar energía. Para alcanzar este objetivo, es necesario considerar adecuadamente los siguientes aspectos:

- Configuración de las riostras.
- Diseño de todos los miembros del pórtico (riostras, vigas y columnas).
- Detalles para conexiones y empalmes.

Las especificaciones de diseño modernas consideran que las riostras diagonales pueden desarrollar deformaciones inelásticas durante la ocurrencia de un terremoto severo. De esta forma, la estructura dispone de capacidad para disipar energía bajo la acción del sismo, mediante sucesivos ciclos de fluencia por tracción y pandeo global en compresión (con formación de rótulas plásticas en la zona central y en los extremos de las riostras). La estrategia de diseño asegura que el resto de la estructura (columnas, vigas y conexiones) posean la capacidad suficiente para resistir las cargas gravitatorias, aun cuando las riostras hayan sufrido daño.

La experiencia recogida en terremotos pasados indica que los pórticos arriostrados concéntricamente pueden presentar un desempeño insatisfactorio, si los componentes estructurales y sus conexiones no son diseñados adecuadamente (Tremblay, 1996). Las fallas observadas incluyen fractura de las riostras a través de la sección neta en conexiones apernadas, daño excesivo en vigas y columnas y fractura en conexiones soldadas y apernadas (ver Sección 1.4.5).

En las secciones siguientes se analiza el comportamiento axial de las riostras, que son los componentes estructurales característicos de los pórticos arriostrados, y luego se describen los aspectos principales del comportamiento estructural de los arriostramientos. En las secciones finales se presentan los requerimientos de las especificaciones ANSI/AISC 341-10, considerando dos categorías de pórticos arriostrados concéntricamente: los especiales y los ordinarios o convencionales (en función del nivel de desempeño esperado).

4.2 COMPORTAMIENTO ESTRUCTURAL DE LAS RIOSTRAS

4.2.1 Respuesta cíclica

Las riostras son los componentes estructurales seleccionados para disipar energía, mediante el desarrollo de deformaciones inelásticas. Es por ello que resulta de interés estudiar su comportamiento bajo carga axial cíclica, analizando la respuesta en términos de carga axial, P, desplazamiento axial, δ , y el desplazamiento transversal en el centro de la riostra, Δ (que se produce como consecuencia del pandeo flexional), como se ilustra en la Figura 4-1.

Fig. 4-1. Variables estáticas y cinemáticas en una riostra biarticulada sometida a compresión.

Al aplicar carga axial de compresión, la riostra inicialmente se comporta como un elemento lineal y elástico, experimentando un acortamiento δ (ver Figura 4-2). La carga aumenta hasta que se produce el pandeo global al alcanzar el valor P_{cr}. Si la riostra es suficientemente esbelta, el pandeo se produce en rango elástico, de modo que la eventual descarga de la riostra se realizaría siguiendo la rama de carga, sin deformaciones plásticas. Durante el pandeo, la riostra no solo se acorta axialmente, sino que también experimenta una deflexión lateral (cuya variación en función de la carga axial P se representa en la Figura 4-3) y aparecen esfuerzos internos de flexión. A medida que aumenta la deformación axial y desplazamiento lateral, se incrementa también el momento flector y se produce una rótula plástica en la zona central de la riostra (ver Figura 4-1). Si los extremos de la riostra no están articulados, se pueden formar rótulas plásticas también en los extremos de la riostra.

Fig. 4-2. Diagrama P-δ típico de una riostra sometida a carga axial cíclica.

Fig. 4-3. Diagrama P-∆ típico de una riostra sometida a carga axial cíclica.

Cuando la riostra pandea, la resistencia axial disminuye rápidamente, dependiendo de la esbeltez de la riostra, $\lambda = Kl/r$ (donde K es un factor que depende de las condiciones de vínculo, l es la longitud entre puntos de arriostramiento y r es el radio de giro de la sección en la dirección considerada). En general, mientras mayor es la esbeltez más significativa es la caída de resistencia, en términos relativos. Los resultados experimentales indican que la resistencia pospandeo puede llegar a ser un 20% de la carga crítica, en el caso de riostras esbeltas. Para mayor información sobre este aspecto, puede consultarse el trabajo de Remennikov y Walpole, (1998), quienes proponen un factor de reducción, α_c , para cuantificar el decremento de resistencia en la zona de pandeo poscrítico. La variación de dicho factor en función de la esbeltez se presenta en la Figura 4-4.

Fig. 4-4. Factor de reducción

Al remover la carga axial completamente, la riostra se mantiene significativamente deformada, tanto axialmente como lateralmente. Cuando se inicia la carga en tracción, la rigidez axial de la riostra está degradada por efecto del pandeo que experimentó previamente, las rotaciones en la rótula plástica se invierten y la deflexión lateral Δ decrece. Al continuar la carga, la riostra fluye en tracción y se deforma plásticamente, si bien se mantiene una pequeña deflexión lateral, aún cuando la carga se remueva completamente.

Si se inicia un segundo ciclo de carga, se observa que la carga de pandeo, P'_{cr} , es menor que la carga correspondiente al primer ciclo (ver Figura 4-2). Esta reducción es más significativa a medida que aumenta la esbeltez de la riostra. La relación P'_{cr}/P_{cr} puede estimarse mediante la siguiente expresión empírica (Bruneau et al., 1998),

$$\frac{P_{cr}}{P_{cr}} = \frac{1}{1 + 0.35 \frac{Kl}{r\pi} \sqrt{\frac{F_{y}}{E}}}$$
(4-1)

Los resultados obtenidos mediante esta ecuación indi-

can que, para un acero ASTM A-36, la relación P'_{cr}/P_{cr} es igual a 0.87, 0.76 y 0.68 para esbelteces de 40, 80 y 120, respectivamente.

Las Figura 4-5 presenta curvas P- δ obtenidas en los ensayos realizados por Black et al. (1980) sobre tres riostras con esbelteces de 40, 80 y 120. Si bien en los tres ensayos no se usaron los mismos perfiles de acero (para lograr distintas esbelteces), es interesante comparar la forma de los ciclos de histéresis para observar el efecto de la esbeltez de la riostra y la degradación de rigidez y resistencia que se produce como consecuencia de la carga cíclica. Finalmente, en la Figura 4-6, se presenta la relación P- Δ obtenida en esos mismos ensayos, para el caso $\lambda = KI/r = 80$.

Fig. 4-5. Relación P-δ medida experimentalmente en riostras con distinta esbeltez (Black et al, 1980).

A partir de la información experimental recogida en diferentes ensayos, se han desarrollado modelos analíticos que permiten representar las distintas fases del comportamiento histerético de riostras sometidas a carga axial (Remennikov y Walpole, 1997).

Fig. 4-6. Relación P-∆ medida experimentalmente en una riostra con Kl/r=80 (Black et al, 1980).

4.2.2 Factores que afectan la respuesta

En las últimas cuatro décadas se han realizado numerosos estudios experimentales y analíticos para estudiar la respuesta nolineal de las riostras. Esos estudios han permitido identificar tres parámetros principales, a saber, la esbeltez de la riostra (λ =Kl/r), sus condiciones de vínculo y la forma de la sección.

a. Esbeltez

La esbeltez es el parámetro más importante e influye significativamente no sólo en la resistencia a compresión, sino también en la resistencia poscrítica y en la degradación de resistencia por carga cíclica. Bruneau et al. (1998) clasifican a las riostras en tres grupos: esbeltas, intermedias y robustas o poco esbeltas.

Las riostras esbeltas son aquellas en que la tensión crítica de pandeo elástico es menor que el 50% de la tensión de fluencia. Si se acepta como válida la ecuación de Euler para calcular la tensión crítica, esta condición puede expresarse en términos de esbeltez como:

$$\lambda \ge \frac{2020}{\sqrt{F_y}} \tag{4-2}$$

donde F_y es la tensión de fluencia en MPa. Para un acero ASTM A-36, la Ecuación 4-2 implica que $\lambda \ge 130$. Las riostras esbeltas se caracterizan por pérdida significativa de resistencia y rigidez por causa del pandeo, baja rigidez tangente para carga P=0 y deformaciones residuales. En el caso particular de riostras muy esbeltas estos efectos negativos son más acentuados y al retomar la carga en tracción se produce un rápido aumento de la rigidez. Este incremento repentino induce un efecto similar al de una carga de impacto, lo cual puede originar daño en la riostra y en sus conexiones.

Las riostras robustas son aquellas cuya respuesta en compresión está controlada por la fluencia y el pandeo local. La rótula plástica que se forma en el centro de la riostra, como consecuencia del pandeo global, reduce su capacidad debido al pandeo local, y disminuye la capacidad de disipar energía. El valor límite de esbeltez para definir el rango de las riostras robustas depende de la relación anchura-espesor de la sección y de las características de la relación tensión-deformación del acero. No obstante, puede definirse aproximadamente que esta categoría comprende riostras con esbelteces menores a 60 para aceros ASTM A-36 y menores a 50 para aceros de Grado 50. Los ciclos histeréticos de las riostras robustas se caracterizan por tener mayor área y menor degradación que los correspondientes a riostras intermedias y esbeltas.

Finalmente, las riostras intermedias, como su nombre lo indica, exhiben un comportamiento comprendido entre las otras dos categorías. Los efectos de degradación de rigidez y resistencia son menores que los observados en riostras esbeltas y mayores que los correspondientes a las robustas.

Los estudios de Tang y Goel (1989) sobre riostras formadas por secciones tubulares indican que el número de ciclos para producir la fractura de una riostra aumenta, generalmente, con el incremento de la esbeltez de la riostra. Esta es una de las principales razones por la cual los límites de esbeltez se han incrementado paulatinamente en las dos últimas décadas. Actualmente, se permite el uso de riostras con esbeltez menor o igual a 200 (condicionado a que se apliquen criterios de diseño por capacidad). Este valor, para el caso de riostras de acero ASTM A36 es casi el doble del permitido en las especificaciones del año 1992.

b. Condiciones de vínculo

Las condiciones de vínculo afectan la deformada de pandeo y por ende la longitud efectiva, Kl, usada para determinar la resistencia. El factor K de longitud efectiva puede determinarse mediante valores tabulados, para los casos simples, o bien mediante ábacos o procedimientos de análisis estructural, para el caso de pórticos u otras estructuras más complejas. Los distintos métodos para determinar K se describen en las especificaciones ANSI/AISC 360-10 o en los libros de textos sobre estructuras de acero, por ejemplo, McCormac (2002), Salmon et al. (2008), Vinnakota (2006).

Los estudios realizados por Black et al. (1980) mostraron que la deformada en rango inelástico, luego de producido el pandeo, es similar a la deformada elástica. Se observó en ensayos cíclicos que, a medida que se aumenta el número de ciclos, la curvatura de la riostra tiende a concentrarse en la rótula plástica ubicada en la zona central.

El efecto de las condiciones de vínculo en la respuesta histerética de las riostras también fue estudiado por Black et al. (1980), quienes ensayaron riostras con igual esbeltez, con distintas secciones y con extremos articulado-articulado y articulado-fijo. En el caso de riostras formadas por secciones I y tubos circulares, se observó un relativo incremento del área de los ciclos de histéresis, mientras que en el caso de riostras formadas por dos perfiles ángulo no se detectaron diferencias al cambiar las condiciones de vinculación de los extremos.

c. Forma de la sección

La forma de la sección de las riostras afecta su comportamiento estructural y para evaluar su influencia deben considerarse varios aspectos. Uno de ellos es la eficiencia de la sección, que a igualdad de área transversal, se cuantifica a través del radio de giro. Así por ejemplo, los tubos de sección cuadrada y circular presentan ventajas comparativas frente a secciones I o secciones canal. Estas ventajas son fundamentalmente de tipo económico (porque se logra un disminuir la cantidad de material utilizado), pero no necesariamente implican un mejor comportamiento estructural bajo acciones cíclicas

Otro aspecto fundamental es la compacidad de la sección, medida a través de la relación anchuraespesor, debido a que este parámetro se vincula directamente con los problemas de pandeo local. De modo que las secciones con elementos más compactos, presentan mayor capacidad de disipar energía y de evitar fracturas como resultado de las grandes deformaciones localizadas que induce el pandeo local. A partir de resultados experimentales obtenidos en un extenso proyecto de investigación, Black et al., (1980), proponen el siguiente agrupamiento de secciones para riostras de acero, ordenadas en forma decreciente según su desempeño:

- Tubos de sección circular
- Tubos de sección rectangular
- Secciones I
- Secciones T
- Secciones "doble ángulo"

Estudios posteriores realizados por Goel y sus colaboradores (según se indica en los comentarios de AN-SI/AISC 341-10) mostraron que las secciones tubulares son susceptibles de fractura por concentración de deformaciones en la zona central. Los tubos de sección rectangular con relaciones anchura-espesor elevadas son los que presentan mayor riesgo, de ahí la importancia de respetar las limitaciones indicadas en las especificaciones de diseño.

Las soluciones recomendadas para demorar el inicio del pandeo local y evitar fractura en las riostras son la colocación de rigidizadores, el uso de elementos con menores relaciones anchura-espesor y el uso de tubos de acero rellenos de hormigón simple. Es importante mencionar que el relleno del tubo con hormigón no evita completamente la ocurrencia del pandeo local, pero sí demora su ocurrencia, debido a que el hormigón restringe el pandeo hacia el interior del tubo. Los resultados experimentales obtenidos por Liu y Goel (1988) confirman que se logra una mejora sustancial del comportamiento de la riostras con relleno de hormigón ante cargas cíclicas, excepto para tubos con relaciones anchura-espesor elevadas (b/t=30, en esos ensayos). Se observó que la deformada de pandeo local se produce hacia el exterior del tubo, con forma similar a una cúpula rebajada. La zona afectada es mayor que en el caso de tubos sin relleno, por lo que la demanda de

deformación es menor.

Las riostras también pueden construirse con secciones armadas (*built-up members*). En la Figura 4-7 se muestra algunas secciones típicas para el caso usual de usar dos riostras individuales vinculadas entre sí con placas de costura (*stitches*). Esta configuración permite vincular la riostra al pórtico mediante una chapa nodal que tiene igual espesor que las placas de costura. Debe limitarse la separación de las placas de costura para evitar problemas de pandeo de cada barra individual. En particular, la opción que se muestra en la Figura 4-7 (c), consistente en el uso de dos tubos de acero de sección rectangular, presenta ventajas interesantes frente a una riostra equivalente formada por un único tubo de sección rectangular mayor.

Fig. 4-7. Ejemplos de secciones armadas para riostras.

4.3 CONFIGURACIÓN GEOMÉTRICA DE LAS RIOSTRAS

4.3.1 Criterios estructurales

Los pórticos arriostrados pueden diseñarse con diversas configuraciones de riostras, las cuales deben respetar no solo criterios estructurales, sino también requerimientos funcionales (por ejemplo, por la ubicación de puertas y ventanas), económicos, estéticos, etc. Cuatro de las configuraciones más usuales se representan esquemáticamente en la Figura 4-8.

Una primera consideración para el diseño del sistema de arriostramientos se relaciona con el ángulo de inclinación de las riostras, cuyo valor se recomienda que esté comprendido entre 30 y 60°. Caso contrario, se desarrollan esfuerzos internos en las riostras o en el pórtico que son desproporcionados y el sistema pierde eficiencia. Además, se puede dificultar la construcción de las conexiones entre las riostras y el pórtico.

Otro aspecto importante para lograr un adecuado desempeño del sistema estructural es lograr que en cada plano resistente las riostras se dispongan de forma tal que la respuesta del sistema sea aproximadamente simétrica (en términos de resistencia y rigidez) cuando la estructura es sometida a acciones laterales cíclicas. Esto usualmente se logra disponiendo un número par de riostras en cada plano resistente, con igual sección y ángulo de inclinación (como en los casos de la Figura 4-8). De esta forma, la inversión del sentido de carga produce alternancia de esfuerzos de compresión y tracción en las riostras, las cuales varían su resistencia y rigidez, pero la respuesta estructural del sistema es similar en ambos sentidos. Además, el adecuado balance entre riostras comprimidas y traccionadas evita la acumulación de distorsiones de piso inelásticas en una dirección. Por estas razones, las configuraciones indicadas en la Figura 4-9 no son adecuadas y los reglamentos de diseño sismorresistente usualmente desalientan o prohíben su uso (mediante requerimientos que se explican más adelante).

Fig. 4-8. Configuraciones de riostra: (a) en X, (b) diagonales, (c) en V y (d) en V invertida o Chevron.

4.3.2 Riostras en V y V invertida

Las configuraciones de riostras dispuestas en V o V invertida son muy usadas en edificios y estructuras industriales, si bien presentan algunas particularidades que deben considerarse en el diseño. El vértice de los arriostramientos no coincide con un nudo vigacolumna del pórtico, sino que se conecta en la zona central de las vigas. Mientras la estructura responde en rango elástico, las fuerzas axiales en las riostras son iguales en valor absoluto (ver Figura 4-10). Sin embargo, cuando la riostra comprimida pandea su capacidad resistente disminuye (hasta un cierto valor P_c), mientras que la fuerza axial en la riostra traccionada aumenta (hasta alcanzar un valor P_t). Se origina así una fuerza vertical en la viga, P_{un} , (ver Figura 4-11), como resultado del desbalance entre los esfuerzos axiales resistidos por las riostras:

$$P_{un} = \left(P_t - P_c\right) sen\alpha \tag{4-3}$$

donde α representa el ángulo de inclinación de ambas riostras respecto de la horizontal.

Fig. 4-9. Configuraciones inadecuadas que resultan en una respuesta estructural asimétrica.

Fig. 4-10. Mecanismo de deformación de un pórtico con riostras en V invertida (a) antes y (b) después del pandeo global de la riostra comprimida.

Fig. 4-11. Fuerza vertical en el nudo resultante de la diferencia de resistencia a tracción y compresión de las riostras.

De lo expuesto se deduce que la respuesta en rango inelástico depende no solo de la relación entre la resistencia a compresión y tracción de las riostras y de la resistencia pospandeo de la riostra comprimida, sino también de la resistencia flexional de la viga. Es por ello que se consideran usualmente dos casos: pórticos con viga fuerte o débil, de acuerdo a la resistencia relativa entre la viga y las riostras (Remennikov y Walpole, 1998). En el primer caso, la viga puede resistir sin plastificarse los esfuerzos resultantes de la acción sísmica y de las cargas gravitatorias, mientras que en el caso de vigas débiles se puede formar una rótula plástica en la viga, luego de que la riostra comprimida pandea, como se ilustra en la Figura 4-10(b). Cuando la dirección de la acción sísmica se invierte, la riostra que ha pandeado previamente no se puede enderezar completamente debido a la deflexión vertical de la viga. Si la riostra opuesta, anteriormente traccionada pero ahora comprimida, también pandea, la resistencia lateral disminuye significativamente (porque depende del comportamiento post-pandeo de las riostras). De modo que la respuesta global de la estructura no es adecuada, por lo cual el uso de este tipo de arriostramientos con vigas débiles deben evitarse en el diseño sismorresistente.

Otra opción para evitar los efectos negativos de las carga vertical P_{un} en el centro de las vigas es utilizar una columna intermedia adicional (*zipper*), como se muestra en la Figura 4-12 (a) o alternar la ubicación de las riostras para formar una X que comprende dos pisos, Figura 4-12 (b).

4.3.3 Riostras en K

La configuración de riostras en K, cuyo esquema se indica en la Figura 4-13, presenta problemas similares a los mencionados previamente para las disposiciones en V y V invertida. En la zona central de las columnas, donde se conectan las riostras, se puede generar una fuerza horizontal por el desbalance entre los esfuerzos de tracción y compresión y la consecuente formación de una rótula plástica (ver Figura 4-14). Esta situación puede provocar la falla de la columna, con graves consecuencias para todo la estructura. Es por ello, que este tipo de configuración no es recomendable y su uso no está permitido por las especificaciones sísmicas AN-SI/AISC 341-10.

Fig. 4-12. Configuraciones de riostra para mitigar el efecto de fuerzas desbalanceadas en las vigas: (a) con columna de cierre o "zipper" y (b) en X sobre módulos de 2 pisos.

Fig. 4-13. Pórtico arriostrado en K.

4.3.4 Riostras tipo tensor en X

Los pórticos con tensores en X (ver Figura 4-15) fueron uno de los primeros sistemas con arriostramientos que se utilizaron y aún se usan en la actualidad para estructuras cuyo diseño está controlado por acciones de viento. Sin embargo, su aplicación como sistema sismorresistente no es recomendable, debido al comportamiento particular de los tensores, que son riostras con una esbeltez muy elevada (kL/r > 300) y por ende su resistencia a compresión es prácticamente nula. Si bien la estructura es redundante y en todo momento hay al menos un tensor traccionado, la respuesta cíclica exhibe etapas de comportamiento donde la rigidez es muy reducida o nula (medida por la pendiente de la curva carga-desplazamiento) y la resistencia lateral es baja, como se observa en la Figura 4-16.

Fig. 4-14. Mecanismo de deformación de un pórtico con riostras en K (a) antes y (b) después del pandeo global de la riostra comprimida.

Fig. 4-15. Pórtico arriostrado con tensores en X.

Adicionalmente, como se mencionó en la sección 4.2.2, los arriostramientos con tensores en X presentan el problema de un repentino aumento de rigidez cuando la riostra, luego de pandear, toma carga en tracción, pudiendo originar un efecto similar al de una carga de impacto. Por estas razones, el uso de estos arriostramiento no es recomendado (incluso algunos reglamentos lo prohíben mediante limitaciones de esbeltez o resistencia de las riostras), salvo que la estructura se diseñe para trabajar en rango elástico.

Fig. 4-16. Respuesta estructural de un pórtico arriostrado con tensores en X, ensayado por Wakabayashi (1986).

4.4 DISEÑO DE PÓRTICOS ARRIOSTRADOS

4.4.1 Mecanismo plástico

Los pórticos arriostrados concéntricamente pueden desarrollar un mecanismo plástico aceptable, ante la acción de un sismo severo. Como se ilustra esquemáticamente en la Figura 4-17, la deformación inducida por el sismo origina el pandeo de las riostras comprimidas y posteriormente la fluencia de las riostras traccionadas. Si se invierte el sentido de la acción sísmica, las riostras que estaban traccionadas se pandean al quedar comprimidas y viceversa. De modo que se puede lograr un comportamiento dúctil, con adecuada disipación de energía, debido a la fluencia en tracción y también por las deformaciones plásticas que localmente induce el pandeo de las riostras.

Fig. 4-17. Mecanismo plástico de un pórtico arriostrado.

La observación de estructuras sometidas a sismos reales indica que, si bien es posible desarrollar un mecanismo plástico con adecuada ductilidad, las riostras quedan sometidas a grandes ciclos de deformaciones inelásticas. Para resistir el efecto de estas deformaciones sin pérdidas importantes de rigidez y resistencia es de fundamental importancia realizar un diseño cuidadoso que incluya detalles adecuados de los miembros y conexiones para ese nivel de ductilidad.

4.4.2 Diseño de conexiones

Las riostras usualmente se vinculan a las vigas y columnas del pórtico mediante chapas de nudo (*gusset plates*), usando como medio de unión pernos o cordones de soldadura. La experiencia recogida en terremotos pasados y en ensayos de laboratorio indica que muchas de las fallas observadas se producen en las conexiones, de ahí la importancia de que se diseñen y detallen adecuadamente. Para ello, es necesario asegurar que la conexión tenga una resistencia a tracción, compresión y flexión suficiente como para soportar los máximos esfuerzos que le puede trasmitir la riostra, cuando ésta desarrolla su capacidad resistente. Este objetivo puede lograrse mediante la aplicación de los principios del diseño por capacidad.

Es importante destacar que las especificaciones ANSI/AISC 341-10 indican requerimientos particulares para la conexión viga-columnas y también para la conexión de las riostras, con el objeto de permitir el desarrollo de un mecanismo dúctil en los pórticos especiales arriostrados concéntricamente.

Como criterio general de diseño, se debe considerar que soldadura y pernos en una conexión no deben resistir en forma compartida la misma componente de una fuerza. En la Figura 4.18 se muestra un detalle inadecuado, donde la fuerza axial en la riostra se transfiere a la placa de nudo mediante soldadura de ranura en las alas y pernos en el alma. Además, la componente vertical actuante en la placa de nudo y en la viga se transfiere a la columna, teóricamente, mediante soldadura de filete y pernos. En la realidad, la diferencia de rigidez entre ambos medios de unión conduce a que la casi totalidad de dicha fuerza vertical se transfiera mediante la soldadura de la placa de nudo.

Fig. 4-18. Detalle de conexión inadecuado, debido a

que pernos y soldadura resisten en forma conjunta las fuerzas actuantes.

La Figura 4-19 presenta dos ejemplos de conexiones para riostras que cumplen con las especificaciones de diseño. En el primer caso, la riostra, la viga y la placa de nudo se unen mediante soldadura de ranura y de filete. En este caso, los pernos indicados en el detalle solo sirven en la etapa de montaje para posicionar la riostra y la viga, mientras se ejecuta la soldadura en obra. En el segundo ejemplo, la carga axial de la riostra se transfiere íntegramente mediante cordones de soldadura, que conectan la riostra con la placa de nudo y ésta con la columna y la viga. Las fuerzas actuantes en la viga (corte vertical y eventualmente carga axial) se transfieren a la conexión mediante pernos, con lo cual se agiliza el montaje y se reduce la ejecución de soldadura en obra.

Fig. 4-19. Ejemplos de conexiones recomendadas para riostras, (a) conexión totalmente soldada, (b) conexión con soldadura y pernos.

4.5 PÓRTICOS ESPECIALES ARRIOSTRADOS CONCÉNTRICAMENTE

4.5.1 Objetivo general del diseño

Los pórticos especiales arriostrados concéntricamente (*SCBF*) se diseñan para desarrollar deformaciones inelásticas significativas, mediante la fluencia y pandeo de las riostras. En estructuras típicas, el comportamiento inelástico de las riostras puede iniciarse para valores moderados de la distorsión lateral de piso (del orden de 0.3 a 0.5%) y, ante la ocurrencia de sismos severos, las riostras pueden desarrollar deformaciones axiales muy elevadas, por lo que se requiere un diseño adecuado de todos los componentes estructurales para evitar fallas prematuras. El factor de modificación de respuesta R para este tipo estructural es de 6, de acuerdo al código ASCE 7-10.

Si bien estos pórticos arriostrados se caracterizan por sus conexiones concéntricas, se permiten pequeñas excentricidades cuya magnitud no debe exceder la altura de la viga. En esos casos se requiere que los esfuerzos resultantes de esa excentricidad (momento flector y corte) sean considerados en el diseño y que su efecto no altere la capacidad de deformación inelástica.

4.5.2 Análisis

La resistencia requerida en vigas y columnas debe determinarse a partir de la combinaciones de carga correspondientes, con consideración de la acción sísmica amplificada. Para determinar el efecto de la acción sísmica incluyendo sobrerresistencia, E_{mh} (ver Sección 2.5.2) se deben considerar los esfuerzos más desfavorables resultantes de los dos siguientes casos:

- Análisis en el que se supone que las riostras desarrollan la resistencia esperada a compresión y tracción.
- Análisis en el que se asume que las riostras traccionadas desarrollan su resistencia esperada, mientras que las comprimidas desarrollan su resistencia de pos-pandeo.

La resistencia esperada a tracción se determina como $R_y F_y A_g$, Para las riostras comprimidas, la resistencia esperada se adopta como el menor valor entre $R_y F_y$ $A_g y 1.14 F_{cre} A_g$ (donde F_{cre} es la tensión crítica F_{cr} de terminada para una tensión de fluencia igual a Ry F_t), mientras que la resistencia esperada de pos-pandeo se puede determinar como 0.3 veces la resistencia esperada a compresión. La longitud de pandeo para el cálculo de la tensión crítica no debe exceder la distancia entre los extremos de la riostra.

4.5.3 Riostras

Las especificaciones definen dos condiciones principales para las riostras: (i) esbeltez máxima y (ii) resistencia requerida. La esbeltez de las riostras debe cumplir la condición:

$$Kl/r \le 200 \tag{4-4}$$

Este límite es mayor que en versiones anteriores del reglamento debido a que investigaciones recientes muestran que la falla por fractura bajo carga cíclica es menos probable a medida que se incrementa la esbeltez de la riostra.

Además se requiere que el área efectiva de la riostra no sea menor que el área bruta de la misma. Esta condición implica la colocación de refuerzos especiales en las zonas de conexión donde se reduce la sección, por ejemplo, en riostras con conexiones apernadas o riostras tubulares soldadas, que se insertan a las chapas de nudo mediante ranuras realizadas en los extremos. Con ello se busca evitar la ruptura de la riostra en la sección neta antes de que la estructura desarrolle ductilidad, como se observa en la Figura 4.20. El diseño de la conexión de la riostra se puede ver muy condicionado para dar cumplimiento a este requerimiento.

Fig. 4-20.Fractura de una riostra en la sección neta (Fu et al., 2007)

Para el caso de secciones armadas, se requiere controlar el espaciamiento de las placas de costura u otros medio de unión, de modo que la esbeltez de los componentes individuales sea menor que el 40% de la esbeltez global de la sección armada. No se permite el uso de pernos para unir las placas de costura en el cuarto central de las riostras, donde puede formarse una rótula plástica.

La parte central de las riostras, donde se puede producir una rótula plástica como consecuencia del pandeo flexional y los extremos de la riostras (incluyendo las conexiones y una longitud igual a la anchura de la riostra, d) se consideran zonas protegidas, como se muestra en Figura 4-21. Es importante notar que en el caso de riostras en X la conexión central es también una zona protegida. En ese caso, la longitud L se mide desde el extremo de la riostra hasta la conexión central y, a los efectos de definir las zonas protegidas, se deben considerar como si fueran cuatro riostras (ver Figura 4-22).

4.5.4 Configuración de las riostras

En cada plano resistente, las riostras deben disponerse en direcciones alternadas con el objeto de conseguir un buen balance entre la resistencia de las riostras traccionadas y comprimidas. Es por ello que se exige en cada plano que, ante fuerzas laterales actuando en ambas direcciones, las riostras traccionadas resistan entre el 30% y 70% de la fuerza sísmica actuante en dicho plano. Esta condición puede obviarse cuando la resistencia a compresión de las riostras es mayor que la resistencia requerida obtenida a partir de las combinaciones de carga con los estados de carga sísmica amplificada (lo que implica una respuesta esencialmente elástica del pórtico arriostrado).

Fig. 4-21. Definición de las zonas protegidas en una riostra y sus conexiones.

Fig. 4-22. Zonas protegidas en riostras en X.

El cumplimiento de esta condición excluye el uso de tensores en X, al igual que las riostras en K, como sistema de arriostramientos para pórticos especiales arriostrados.

4.5.5 Relación anchura-espesor

Las columnas y riostras de los pórticos especiales arriostrados concéntricamente deben satisfacer los requerimientos para miembros de ductilidad elevada. De modo que las secciones de esos miembros deben tener relaciones anchura-espesor que no superen el valor límite λ_{hd} . Las vigas se consideran como miembros de ductilidad moderada, por lo cual las secciones deben verificarse con el valor límite λ_{md} .(que representa una condición menos estricta que la anterior). Estas exigencias son coherentes con el criterio de diseño sismorresistente para estos pórticos, mediante el cual se permite el pandeo global de la riostra y se limita la ocurrencia del pandeo local, que puede originar fallas frágiles por fractura del acero.

4.5.6 Conexiones viga-columna

Las conexiones viga-columna en los pórticos arriostrados usualmente incluyen una chapa de nudo para permitir la conexión de la riostra. En estos casos, el reglamento ANSI/AISC 341-10 requiere que la conexión viga-columna cumpla con una de las siguientes alternativas:

- a) La conexión se diseña como una conexión simple capaz de permitir una rotación de 0.025 rad.
- b) La conexión se diseña para resistir un momento flector igual al menor de los dos valores siguientes:
 - Resistencia flexional esperada de la riostra por 1,1, esto es 1.1 R_y M_{p.}
 - Suma de las resistencia flexionales esperadas de la columna multiplicada por 1.1.

Las conexiones, en este caso, deben cumplir con los mismos requerimientos de conexiones vigacolumna en pórticos no arriostrados ordinarios.

Los comentarios del reglamento presentan a modo de ejemplo, una conexión ensayada por Stoakes y Fahnestock, (2010), cuyas características se presentan en la Figura 4-23. Se observa que la viga y la chapa de modo se conectan mediante perfiles L apernados al ala de la columna. La deformabilidad propia de los perfiles L permite que la conexión pueda rotar según lo requerido por el reglamento para una conexión simple.

La Figura 4-24 representa otras dos alternativas propuestas y ensayadas por Thornton y Muir (2008) en donde la viga y la chapa nodal se conectan en forma rígida, mediante soldadura, a la columna. Sin embargo, la viga cuenta con un dispositivo que permite la rotación de 0.025 rad. requerida por el reglamento. En el caso (a) se emplean perfiles L, soldados al alma de la viga y conectados entre sí mediante pernos, de modo que se permite el giro por la deformabilidad de los perfiles L (como en el caso de la Figura 4.23). En la segunda alternativa, caso (b), la rotación se permite mediante una articulación dispuesta en el extremo de la viga.

Fig. 4-23. Conexión simple propuesta por Stoakes y Fahnestock, (2010).

Fig. 4-24. Conexiones simples propuesta por Thornton y Muir, L. S. (2008).

Los comentarios del reglamento también indican la posibilidad de usar para pórticos especiales arriostrados

concéntricamente una conexión simple propuesta por Fahnestock et al. (2007) para riostras de pandeo restringido. Las características principales de esta conexión se ilustran en la Figura 4-25, donde se observa que la viga se conecta únicamente mediante chapas o cubrejuntas de alma, con lo cual se permite la rotación.

Fig. 4-25. Conexión simple propuesta Fahnestock et al. (2007) para riostras de pandeo restringido.

4.5.7 Conexiones de las riostras

Las conexiones deben cumplir los siguientes requerimientos:

a. Resistencia requerida a tracción

La resistencia requerida a tracción de las conexiones debe adoptarse como el menor de los valores siguientes:

- La resistencia a fluencia esperada de la riostra, la cual se determina como R_y F_y A_g (donde Ag es el área bruta de la riostra).
- La máxima carga axial que puede ser transferida a la riostra, determinada mediante análisis estructural (cuya determinación se explicita en la Sección 4.5.2).

b. Resistencia requerida a compresión

La conexión debe diseñarse considerando que la resistencia requerida a compresión es al menos igual a la resistencia esperada a compresión de la riostra, 1.1 R_y P_n (donde P_n es la resistencia nominal a compresión).

c. Efectos originados por el pandeo de la riostra

La conexión debe ser capaz de resistir los efectos inducidos por la formación de rótulas plásticas en los extremos cuando se produce el pandeo global de la riostra. De modo que la conexión debe tener suficiente resistencia flexional o bien adecuada capacidad de deformación para acomodar la rotación del extremo de la riostra. Es por ello que el reglamento requiere que se cumpla uno de los siguientes requerimientos:

- Resistencia flexional requerida: la resistencia flexión de la conexión debe ser al menos igual a la resistencia flexional esperada de la riostra por 1,1, esto es 1.1 R_y M_p (M_p se determina respecto del eje crítico de pandeo).
- Capacidad de rotación: la conexión debe ser capaz de permitir la rotación impuesta por el pandeo de la riostra correspondiente al nivel de distorsión de piso de diseño. Se permite considerar la rotación inelástica de la conexión.

Es importante aclarar que estas condiciones de resistencia deben verificarse considerando la posibilidad de pandeo en el plano de la placa de nudo y también el pandeo fuera de dicho plano. En el primer caso, la placa y los elementos de conexión se diseñan para cumplir la condición de resistencia flexional requerida. En el caso del pandeo fuera del plano de la riostra, es muy difícil, en general, cumplir con la condición de que conexión sea más resistente flexionalmente que la riostra. En este caso resulta conveniente detallar la conexión de modo de acomodar las rotaciones inelásticas de la riostra. En la Figura 4-26 se presenta, a modo de ejemplo, un detalle de conexión recomendado en las especificaciones ANSI/AISC 341-10, mediante el cual se induce la formación de una franja de fluencia en la placa de nudo para acomodar las rotaciones de la riostra y, adicionalmente, para disipar energía. Este detalle ha sido verificado experimentalmente y se demostró que la anchura de la franja de fluencia 2 t (donde t es el espesor de la chapa de nudo) es suficientemente pequeño como para evitar el pandeo de la chapa. El valor 2t es una distancia mínima por lo que es recomendable especificar un valor un poco mayor (2t + 25mm) en los planos de construcción para considerar las tolerancias de montaje.

Fig. 4-26. Relación carga axial-desplazamiento transversal medida experimentalmente.

El criterio indicado en la Figura 4-26 es efectivo

desde el punto de vista estructural, pero en su aplicación práctica puede conducir a chapas nodales de dimensiones excesivas, y por ende a un aumento de los costos. Es por ello que Lehman et al. (2008), propusieron un patrón de fluencia alternativo con una trayectoria elíptica. En la Figura 4-27 se muestra una fotografía tomada al finalizar el ensayo de una placa diseñada con este criterio. Se observa la formación de una banda de fluencia (zona más oscura debido a que la fluencia origina el desprendimiento de la pintura blanca) que permitió cumplir adecuadamente con el criterio reglamentario de rotación inelástica. Para más detalles sobre el diseño de este tipo de chapas nodales se puede consultar el trabajo de Lehman et al. (2008) o Bruneau et al. (2010).

Fig. 4-27. Chapa nodal con patrón de fluencia de trayectoria elíptica (Lehman et al., 2008).

Alternativamente, se puede lograr una adecuada capacidad de rotación inelástica con el detalle de conexión representado en la Figura 4-28. En este caso, se dispone una chapa intermedia que conecta la chapa nodal y la riostra. Esta chapa intermedia rigidiza la chapa nodal (y le confiere resistencia flexional en su plano) y cuenta con una longitud libre, de dimensión 2t como mínimo, que permite acomodar la rotación inelástica resultado del pandeo en el plano del pórtico. Los ensayos realizados por Tremblay et al. (2008), demostraron un comportamiento satisfactorio de este detalle de conexión.

Un caso particular, pero de mucho interés práctico, es el de las conexiones de riostras de sección tubular, dado que este tipo de secciones son utilizadas frecuentemente por su adecuada resistencia a compresión. Durante muchos años, un detalle usual para estas conexiones consistió en realizar dos cortes longitudinales en los extremos de la riostra (como ranuras) y luego soldar una plancha de acero insertada en los cortes, como se indica en la Figura 4-29 (a). Es importante recordar, como se mencionó en la Sección 4.5.3, que el reglamento requiere que la sección efectiva sea al menos igual que la sección bruta de la riostra, condición que no satisface el detalle mencionado (salvo que se agreguen refuerzos, como se explica más adelante). Es por ello que se han propuesto y ensayado diversas alternativas para la conexión de riostras de sección tubular. Una de ellas se ilustra en la Figura 4-29 (b) y consiste en realizar una caladura en la chapa de conexión, la cual se suelda a la riostra sin reducir la sección de la misma.

Fig. 4-28. Chapa de conexión dúctil para rotulación en el plano del pórtico.

Fig. 4-29 Detalles para conexión de riostras de sección tubular, (a) inadecuado porque reduce la sección y (b) adecuado.

Otra solución consiste en usar chapas o planchuelas de refuerzo con el fin de aumentar la sección en la zona de la conexión. La Figura 4-30 muestra un detalle diseñado con este criterio, donde se observa que la riostra de sección cuadrada se inserta en una chapa nodal. La riostra se refuerza en sus extremos mediante dos chapas soldadas en caras opuestas del tubo. Este detalle fue ensayado por Tremblay et al. (2008), y se demostró que la conexión exhibe una adecuada respuesta estructural.

Fig. 4-30 Detalles para conexión de riostras de sección tubular reforzada con chapas adicionales.

Finalmente, se menciona el detalle de conexión desarrollado por la empresa Cast ConneX mediante una pieza especial fundida de acero que se suelda al extremo de riostras de sección circular. Esta pieza se inserta en la chapa nodal y luego se fija mediantes pernos. En la Figura 4-31 se muestra una fotografía de una riostra con este tipo de conexión y el detalle de la pieza de acero.

Figura 4-31. Conexión Cast ConneX High-Strength Connector (http://www.castconnex.com)

4.5.8 Requerimientos especiales para arriostramientos en V y V invertida Los pórticos con arriostramientos en V y V invertida deben cumplir con condiciones especiales, cuyo objetivo es evitar daños en la zona central de la viga donde se conectan las riostras (ver Sección 4.3.2). Las especificaciones indican que las vigas deben ser continuas entre las columnas y que la misma deben arriostrarse lateralmente de acuerdo a los requisitos para miembros de ductilidad moderada (para controlar los efectos adversos que podría originar el pandeo lateral-torsional de la viga u otros efectos torsionales inducidos por el pandeo de las riostras).

4.5.9 Arriostramientos en K

El sistema de arriostramientos en K no puede utilizarse para pórticos especiales arriostrados.

4.5.10 Sistemas duales

Los pórticos especiales arriostrados concéntricamente pueden usarse en combinación con pórticos no arriostrados, formado de esa forma un sistema dual (ver Figura 4-32). De esta forma se aprovechan las ventajas de ambos tipos estructurales y el sistema resultante se caracteriza por una adecuada rigidez lateral y capacidad de disipar energía. El factor de modificación de respuesta se adopta como R=8, si el sistema dual incluye pórticos no arriostrados especiales, y R=6 si son pórticos no arriostrados intermedios. En ambos casos se requiere que los pórticos no arriostrados resistan al menos el 25% del corte basal.

Los sistemas duales pueden generarse mediante la combinación de dos tipos estructurales distintos en un mismo plano resistente (como en el ejemplo que se muestra en Figura 4-32) o bien cuando se combinan planos resistentes de distinto tipo en una estructura espacial.

Fig. 4-32. Ejemplo de un sistema dual con pórticos arriostrados concéntricamente y pórticos no arriostrados.

4.6 PÓRTICOS ORDINARIOS ARRIOSTRADOS CONCÉNTRICAMENTE

Los pórticos ordinarios arriostrados concéntricamente son estructuras de ductilidad limitada, de modo que el diseño se realiza con resistencias requeridas que son mayores que en el caso de los pórticos especiales arriostrados. En este caso, el factor de modificación de respuesta R es reducido (el reglamento ASCE/SEI 07-10 considera R=3.25). De esta forma se asegura que las deformaciones inelásticas inducidas por un sismo severo en la estructura son reducidas. Las especificaciones requieren que la esbeltez de las riostras cumpla con la condición definida por la siguiente ecuación:

$$Kl / r \le 4 \sqrt{\frac{E}{F_y}} \tag{4-5}$$

Además, las riostras deben considerarse como miembros de ductilidad limitada. Se prohíbe el uso de arriostramientos en K y en el caso de arriostramientos en V o V invertida se requiere que la viga sea continua entre las columnas.

4.7 UTILIZACIÓN DE RIOSTRAS PARA LA REHABILITACIÓN SÍMSICA

Las riostras de acero, conectadas en forma concéntrica representan una alternativa válida para la rehabilitación sísmica, particularmente en el caso de pórticos de acero u hormigón armado que no cumplen los requerimientos reglamentarios actuales. A modo de ejemplo, las Figuras 4-33 y 4-34 muestran edificios rehabilitados con riostras de acero.

Fig. 4-33. Edificio escolar en la ciudad de Mendoza, Argentina, con estructura de hormigón armado, rehabilitado con el agregado de riostras de acero.

El uso de esta técnica de rehabilitación presenta varias ventajas, como se indicó en la Sección 2.7.2. Sin embargo también presenta algunos inconvenientes, particularmente cuando las riostras se conectan a estructuras existentes de hormigón armado. Las riostras, por su elevada rigidez, quedan sometidas a fuerzas axiales que deben trasmitirse a la estructura en la cual se instalan, como se representa esquemáticamente en la Figura 4.35. La experiencia indica que, en ciertos casos, los esfuerzos a trasmitir son tan elevados, que la estructura existente no los puede resistir (aún con refuerzos localizados) y debe modificarse la estrategia de rehabilitación. No obstante ello, las riostras representan una alternativa viable en muchas situaciones.

Fig. 4-34. Edificio Residence Hall, Berkely, Estados Unidos, rehabilitado con riostras de acero.

Fig. 4-35. Esfuerzos trasmitidos por una riostra al pórtico existente.

En la Figura 4.36 se muestra el detalle de conexión de una riostra de acero de sección tubular al nudo de un pórtico de hormigón armado. Se observa en la fotografía que la chapa de conexión se vincula a la columna de hormigón armado mediante numerosos pernos de anclaje. Este detalle corresponde a la rehabilitación sísmica del edificio "215 Fremont Street" realizada por los Middlebrook + Louie, Structural Engineers.

Fig. 4-36. Detalle de la conexión de una riostra de acero al nudo de un pórtico existente de hormigón armado.

Capítulo 5 Pórticos arriostrados excéntricamente

5.1 INTRODUCCIÓN

Los pórticos arriostrados excéntricamente, adecuadamente diseñados, se caracterizan por desarrollar una respuesta dúctil y estable (como se describió brevemente en la Sección 2.7). En este sistema estructural, las fuerzas axiales inducidas en las riostras son transferidas mediante esfuerzos de corte y flexión en segmentos de reducida longitud, llamados enlaces o links, donde se disipa energía por fluencia del acero. Los enlaces representan "fusibles estructurales", los cuales deben detallarse adecuadamente para evitar que el pandeo local y otros fenómenos de inestabilidad degraden la respuesta. Los restantes componentes del pórtico (vigas fuera de la zona de enlace, columnas, conexiones) se dimensionan aplicando conceptos del diseño por capacidad para asegurar que permanecen en rango elástico.

En las secciones siguientes se presentan los aspectos más relevantes del comportamiento estructural de los pórticos arriostrados excéntricamente y, en particular, de las zonas de enlace y conexiones. Se analizan también los requerimientos de diseño de acuerdo a las especificaciones ANSI/AISC 341-10.

5.2 CONSIDERACIONES ESTRUCTURALES

5.2.1 Configuración geométrica

Las riostras pueden disponerse en distintas configuraciones, para lo cual es necesario considerar no sólo aspectos estructurales, sino también funcionales, arquitectónicos, etc., en forma similar al caso de pórticos arriostrados concéntricamente. La Figura 5.1 ilustra dos configuraciones típicas de uso frecuente en edificios y construcciones industriales. En el caso (a) se utilizan arriostramientos en V-invertida y el enlace, o zona dúctil, se genera en la parte central de la viga, con lo cual se simplifica el diseño de las conexiones. La situación contraria se presenta en el caso (b), donde el enlace se encuentra adyacente a una conexión vigacolumna. Esta conexión debe diseñarse para resistir los elevados esfuerzos que se generan en el enlace adyacente. Además, debe considerarse que en este caso los momentos flectores en ambos extremos del enlace pueden ser diferentes, debido a que la rigidez flexional de los miembros que llegan a cada extremo es diferente.

Alternativamente, se han desarrollado e implementado otras configuraciones que pueden resultar ventajosas en ciertas aplicaciones. En la Figura 5-2 (a) se muestra un ejemplo con arriostramientos en V para generar enlaces en ambos extremos de las vigas. Esta configuración tiene la ventaja de aumentar el número de enlaces y, por ende, la capacidad de disipar energía. Sin embargo, se complica el diseño de las conexiones, como se mencionó previamente para el caso de la Figura 5-1 (b). Es interesante analizar el caso ilustrado en la Figura 5-2 (b), donde el enlace se ubica fuera de la viga, mediante un elemento vertical dispuesto en el vértice de arriostramientos en V-invertida (podrían ser también arriostramientos en V). Con esta configuración se logra que el enlace sea un verdadero "fusible", dado que puede reemplazarse fácilmente en caso de daño. Como limitaciones debe considerarse la complicación en el diseño de las conexiones y el hecho de que el enlace vertical debe transferir parte de la carga gravitatoria que resisten las vigas.

Fig. 5-1. Configuraciones típicas para pórticos arriostrados excéntricamente.

Fig.5-2. Otras configuraciones para pórticos arriostrados excéntricamente.

No es recomendable disponer las riostras de modo

que los enlaces se generen sobre las columnas del pórtico. La razón principal es que el desarrollo de rótulas plásticas en columnas puede resultar en la formación de un mecanismo de piso flexible. Además, las columnas están sometidas a esfuerzos axiles variables, que pueden ser elevados, y que dificultan la evaluación precisa de la resistencia del enlace.

Otra configuración poco conveniente es la que se muestra en la Figura 5-3. En este caso las riostras diagonales se ubican de modo que se generan enlaces en ambos extremos de las vigas, sin embargo estos enlaces pueden no ser totalmente efectivos. Si el enlace A (viga superior) y el enlace B (viga inferior) se diseñan con resistencias diferentes, es probable que uno de ellos se deforme inelásticamente, con lo cual se limita la fuerza que se trasmite por la diagonal y el otro enlace no alcanza a desarrollar su resistencia (y por ende no se producen deformaciones plásticas). Cuando esta situación se produce, el enlace que fluye se denomina activo, mientras que el otro es un enlace inactivo (porque no desarrolla el mecanismo de deformación previsto). La presencia de enlaces potencialmente inactivos no es recomendable, debido a que dificultan el análisis de la estructura y aumentan la complejidad de los detalles y en definitiva el costo de la construcción.

Fig. 5-3. Configuración de pórtico arriostrado excéntricamente con enlaces potencialmente inactivos.

5.2.2 Rigidez lateral

La rigidez lateral de los pórticos arriostrados excéntricamente depende significativamente de la longitud del enlace (ver Figuras 5-1 y 5-2). Cuando dicha longitud es muy reducida, en relación a la longitud total de la viga, la rigidez lateral de la estructura es elevada y se aproxima a la de un pórtico arriostrado concéntricamente, mientras que si la longitud del enlace es grande, la rigidez lateral disminuye y es similar a la de un pórtico no arriostrado.

El efecto de la longitud del enlace sobre la rigidez lateral fue estudiado por Hjelmstad y Popov (1984) y los resultados obtenidos se muestran en la Figura 5-4, para distintos casos de relación altura-longitud, h/L, y considerando que la relación entre el momento de inercia de la viga y de la columnas es $I_b/I_c=0.25$. A los efectos de la comparación de resultados, en todos los casos la rigidez relativa se determina dividiendo la rigidez lateral del pórtico arriostrado excéntricamente por la rigidez del mismo pórtico sin arriostrar. Puede observarse que si la longitud del enlace relativa, e/L, se adopta entre 0.1 y 0.15, la rigidez del pórtico arriostrado excéntricamente es elevada; para valores mayores de e, las riostras pierden efectividad y la rigidez decae rápidamente.

Fig. 5-4. Variación de la rigidez relativa en función de la longitud del enlace, e, para distintos valores de h/L (I_{b}/I_{c} =0.25, Hjelmstad y Popov, 1984).

En el mismo estudio, se evaluó también la influencia de la rigidez relativa entre viga y columna, medida a través de la relación I_b/I_c . En la Figura 5-5 se presentan los resultados en forma similar a los gráficos previos, considerando un pórtico con arriostramiento diagonal simple y tres valores diferentes para dicha relación. Los resultados indican que la rigidez lateral se incrementa significativamente a medida que aumenta la relación I_b/I_c . El efecto de esta variable es más pronunciado para el caso de que la longitud del enlace es relativamente reducida.

Fig. 5-5. Variación de la rigidez relativa en función de la longitud del enlace, e, para distintos valores de I_b/I_c (h/L=0.75, Hjelmstad y Popov, 1984).

5.2.3 Comportamiento estructural del enlace

El enlace está sometido a elevados esfuerzos de flexión y corte (ver Figura 5-6) por efecto de la acción sísmica; la relación entre dichos esfuerzos determina el comportamiento del enlace. A medida que los esfuerzos internos en el enlace se incrementan como consecuencia de la acción sísmica, se pueden desarrollar rótulas plásticas (debido a la flexión) en los extremos o, alternativamente, se puede formar una rótula de corte, con la fluencia del alma debido a dicho esfuerzo.

Fig. 5-6. Diagrama de momentos flectores y esfuerzos de corte en el enlace, (a) enlace central y (b) enlace en extremo de viga.

A los efectos de clasificar los enlaces de acuerdo con su comportamiento estructural, se define la condición de fluencia balanceada cuando se produce simultáneamente la plastificación por flexión y la rótula de corte. A partir de consideraciones de equilibrio (ver diagrama de cuerpo libre en Figura 5-7), se deduce que esta situación ocurre cuando la longitud del enlace es:

$$e_o = \frac{2M_p}{V_p} \tag{5-1}$$

donde M_p es el momento de plastificación del enlace y V_p la resistencia corte correspondiente al estado límite de fluencia del alma:

$$V_{p} = 0.6 F_{v} A_{tw}$$
(5-2)

donde el área A_{tw} se determina según las siguientes expresiones, válidas para secciones I y secciones cajón armadas, respectivamente (ver Figura 5.8):

$$A_{tw} = (d - 2t_f) t_w$$
 (5-3a)

$$A_{tw} = 2(d - 2t_f) t_w$$
 (5-3b)

 t_f es el espesor del ala y t_w el del alma. La Ecuación 5-2 no considera el efecto de la carga axial que puede reducir la resistencia a corte del enlace (como se indica más adelante).

Fig. 5-7. Diagrama de cuerpo libre del enlace.

A partir de la condición de fluencia balanceada se pueden definir los enlaces cortos ($e \le e_o$) como aquellos en donde se producirá una rótula de corte, mientras que en los enlaces largos $(e \ge e_0)$ se formarán rótulas plásticas por flexión (Kasai y Popov, 1986a y 1986b). Sin embargo, los resultados experimentales indican que la Ecuación 5-1, deducida a partir de condiciones de equilibrio, no refleja adecuadamente el comportamiento nolineal. Los enlaces cortos con rigidizadores verticales pueden desarrollar una capacidad a corte de 1.5 V_{p} , debido, principalmente, al endurecimiento de posfluencia. Además, es recomendable que el momento en los extremos no exceda el valor 1.2 M_p, para evitar problemas de fractura por fatiga de bajo ciclaje. Por estas razones, la condición para definir los enlaces cortos se modifica:

$$e_o \le \frac{2(1.2M_p)}{1.5V_p} = \frac{1.6M_p}{V_p}$$
(5-4)

Con igual criterio, los resultados experimentales indican que las rótulas plásticas por flexión se producen en los extremos del enlace cuando:

Fig. 5-8. Secciones usuales para el enlace: (a) sección I y (b) sección cajón, ambas con rigidizadores verticales.

En los casos en que la longitud del enlace está comprendida entre los límites definidos por las Ecuaciones 5-4 y 5-5, los enlaces tienen un comportamiento intermedio, con fluencia por flexión y corte. La clasificación de los enlaces se representa gráficamente en la Figura 5-9. Se incluye en dicha figura el diagrama de interacción M-V adoptado para los enlaces, bajo la hipótesis de que ambas variables, M y V, son independientes. En la realidad esto no es estrictamente válido, sin embargo, los ensayos realizados indican que la interacción es muy débil y puede ser despreciada a los efectos del diseño.

La Figura 5-10 presenta imágenes de ensayos realizados sobre enlaces cortos y largos, en las que se observan las deformaciones plásticas remanentes al finalizar los ensayos. En el primer modelo, caso (a), se observa una significativa deformación por corte y la fluencia generalizada del alma. La falla, luego de numerosos ciclos con deformaciones inelásticas de hasta 0.075 rad, se produjo por fractura del alma (la fractura se inició en correspondencia con la soldadura de un rigidizador). En el caso de las dos fotografías de enlaces largos, casos (b) y (c), se observa claramente el pandeo de las alas y alma en ambos extremos del enlace, donde los momentos flectores son máximos. La falla se produjo a una deformación inelástica del orden de 0.06 rad.

Fig. 5-9. Diagrama de interacción M-V y clasificación de los enlaces en función de su longitud.

Usualmente, los enlaces se diseñan con longitudes reducidas para que funcionen como enlaces cortos, esto es, para inducir la formación de rótulas de corte. Los datos experimentales y los resultados de estudios analíticos muestran la conveniencia de este tipo de enlace, debido principalmente a que la fluencia se distribuye en forma más o menos uniforme en toda el alma. Es por ello que la concentración de deformación plástica es menor que las que se originan en enlaces largos, donde la falla se produce normalmente por fractura del acero en las alas. No obstante ello, el uso de enlaces largos está permitido, dado que puede resultar necesario en ciertos casos donde existen requerimientos arquitectónicos o funcionales especiales.

Las especificaciones sísmicas, originalmente se formularon a luz de las investigaciones realizadas con enlaces formados por secciones I. Luego se realizaron estudios analíticos y experimentales para validar el uso de otro tipo de secciones. Los trabajos de Berman y Bruneau (2008), han demostrado que pueden usarse también secciones tubulares de forma rectangular con rigidizadores verticales externos, como se ilustra en la Figura 5-8. Este tipo de sección mejora la estabilidad del enlace y se desarrolló con el objeto de evitar el uso de arriostramientos laterales, lo cual resulta de utilidad en puentes, estructuras industriales, etc. Es por ello que las especificaciones sísmicas actuales consideran ambas posibilidades como secciones para la zona de enlace.

(c)

Fig. 5-10. Imágenes de ensayos sobre (a) enlaces cortos y (b) enlaces largos (ambos realizados por Okazaki et al., 2004b), y (c) enlace largo.

5.2.4 Resistencia del enlace

La determinación de la resistencia de diseño a corte del enlace se realiza adoptando el menor valor que surge de considerar los estados límites de fluencia por corte en el alma y plastificación por flexión. Cuando el efecto de la carga axial es despreciable, $P_u/P_y \leq 0.15$ se tiene:

Fluencia por corte:

$$V_n = V_p \tag{5-6a}$$

Fluencia por flexión:

$$V_d = 2 \frac{M_p}{e}$$
(5-6b)

Por el contrario, cuando $P_u/P_y > 0.15$ se debe incluir el efecto negativo de la carga axial, que reduce la resistencia:

Fluencia por corte:

$$V_n = V_p \sqrt{1 - \left(\frac{P_u}{P_y}\right)^2}$$
(5-7a)

Fluencia por flexión:

$$V_n = 2 \frac{M_p}{e} \left(\frac{1 - \frac{P_u}{P_y}}{0.85} \right)$$
 (5-7b)

donde P_u es la resistencia axial requerida, P_y la resistencia axial nominal y V_p se define en la Ecuación 5-2. Para el cálculo de la resistencia de diseño, se considera el factor de resistencia a corte ϕ_v =0.90.

Es importante mencionar que, en el caso de enlaces vinculados a losas de hormigón armado, la interacción de la sección compuesta acero-hormigón puede incrementar significativamente la resistencia a corte del enlace. Sin embargo, este efecto se degrada rápidamente a medida que la estructura se deforma cíclicamente en rango inelástico, como resultado del daño localizado en la losa de hormigón. Es por ello que este efecto puede despreciarse a los efectos de evaluar la resistencia de diseño del enlace, si bien es recomendable considerar la sobrerresistencia resultante de la acción compuesta acero-hormigón para determinar las máximas demandas que se generan sobre los restantes componentes estructurales (columnas, riostras, conexiones, etc).

El refuerzo del alma mediante chapas adicionales (*doubler plates*) no está permitido porque dichos refuerzos no participan completamente en el proceso de disipación de energía por deformaciones plásticas. Debe considerarse, además, que las penetraciones o perforaciones en la zona del enlace tampoco están permitidas, debido a que afectan negativamente el comportamiento estructural (ver comentarios de las especificaciones ANSI/AISC 341-10).

5.2.5 Deformación inelástica del enlace

La deformación inelástica en el enlace es un parámetro de significativa importancia en el diseño, siendo necesario controlar los valores máximos esperados en un sismo severo a los efectos de asegurar una respuesta adecuada. La deformación inelástica puede cuantificarse mediante el ángulo de rotación plástica, γ_p , entre el enlace y el tramo de viga adyacente a él. Si bien pueden aplicarse procedimientos de análisis nolineal para determinar el valor de γ_p , resulta práctico para el diseño evaluar dicha deformación a partir de un mecanismo rígido-plástico, como se indica en la Figura 5-11 para tres configuraciones diferentes de pórticos arriostrados excéntricamente. En los dos primeros casos, esto es cuando la viga tiene un enlace, la rotación del enlace se determina como:

$$\gamma_p = \frac{L}{e} \theta_p \tag{5-8}$$

y para el caso de viga con dos enlaces:

$$\gamma_p = \frac{L}{2e} \theta_p \tag{5-9}$$

Mediante este procedimiento simplificado puede estimarse en forma conservadora la demanda de deformación inelástica en el enlace en función de la distorsión de piso, $\theta_p = \delta_p / h$, y de parámetros geométricos como la longitud del vano, L, y la longitud de enlace, e.

Fig. 5-11. Mecanismos de deformación plástica para determinar la rotación en el enlace.

Las Ecuaciones 5-8 y 5-9 indican que la demanda de rotación plástica en el enlace crece a medida que disminuye la relación e/L. Esta variación se presenta en la Figura 5-12, para el caso de pórticos con un enlace en la viga (casos (a) y (b) de la Figura 5-11). Se observa que en enlaces cortos, en relación a la longitud total de la viga, la rotación plástica puede ser varias veces mayor que la distorsión lateral de piso inducida por la acción sísmica.

Las especificaciones de diseño requieren que la demanda de rotación en el enlace no exceda ciertos valores admisibles, con el objeto de evitar deformaciones excesivas que pueden afectar la respuesta dúctil del enlace y, por ende, de toda la estructura. Los resultados experimentales indican que la capacidad de deformación inelástica del enlace depende significativamente del comportamiento esperado. Los enlaces cortos experimentan fluencia por acción de fuerzas de corte uniformes en toda el alma (ver Figura 5-6), mientras que en los enlaces largos la deformación plástica del acero se concentra en los extremos, donde se producen los momentos flectores máximos. Es por ello que los enlaces cortos disponen de una mayor capacidad de deformación. Acorde a estas observaciones, las especificaciones ANSI/AISC 341-10 indican que la rotación del enlace, correspondiente a la distorsión de piso de diseño, no debe exceder los siguientes valores:

- 0.08 para enlaces cortos, $e \leq 1.6 \; M_p / V_p$
- 0.02 para enlaces largos, $e \ge 2.6 M_p/V_p$

En el caso de enlaces intermedios se puede interpolar linealmente para determinar el valor de la rotación admisible. Este criterio se grafica en la Figura 5-13.

Fig. 5-12. Variación de la rotación plástica en el enlace en función de la relación e/L, para pórticos con un enlace en la viga.

Los datos obtenidos de estudios analíticos y experimentales muestran que la máxima demanda de rotación inelástica se produce, usualmente, en los enlaces del piso inferior. La demanda de rotación tiende a disminuir en los pisos superiores y, en general, a medida que aumenta el periodo de vibración del edificio. En estructuras ubicadas en zonas de alta sismicidad, es recomendable realizar un diseño conservador de los enlaces en los pisos inferiores, por ejemplo, aumentando un 10% la resistencia a corte disponible en dichos enlaces (ver comentarios de las especificaciones AN-SI/AISC 341-10).

Fig. 5-13. Rotación admisible en el enlace en función de la longitud e.

5.2.6 Resistencia lateral del pórtico

Al igual que las deformaciones inelásticas, la resistencia lateral del pórtico arriostrado excéntricamente puede determinarse mediante distintas herramientas de análisis nolineal. Dichas herramientas de cálculo, si bien se desarrollaron y se aplicaron en ámbitos académicos, en la actualidad su uso se ha extendido al diseño de estructuras en la práctica profesional. No obstante ello, resulta de interés obtener algunas conclusiones generales que surgen de aplicar el análisis plástico para estimar la resistencia lateral del pórtico. Por ejemplo, si para el caso ilustrado en la Figura 5-11 (a), se iguala el trabajo externo con el trabajo interno desarrollado en los enlaces, bajo la hipótesis de comportamiento rigido-plástico, se tiene que la resistencia lateral F_E es:

$$F_E = \frac{V_p L}{h} \tag{5-10}$$

El valor de V_p en la ecuación previa depende del tipo de enlace. En el caso de enlaces cortos, la respuesta estructural está controlada por el mecanismo de fluencia por corte del alma y la resistencia lateral del pórtico F_E es independiente de la longitud del enlace. Por el contrario, si se diseñan enlaces largos, controla la plastificación en flexión y la resistencia lateral F_E decrece en forma inversamente proporcional a la longitud del enlace.

5.2.7 Comparación entre enlaces cortos y largos

En las secciones previas, se ha analizado el comportamiento estructural del pórtico completo y de sus enlaces (cortos y largos). A modo de resumen, es importante destacar que el uso de enlaces cortos resulta en pórticos de mayor rigidez y resistencia. La capacidad de deformación plástica para el mecanismo de fluencia del alma por corte también es mayor, si bien debe admitirse, como aspecto negativo, que la demanda de deformación se incrementa. Como resultado de la comparación relativa entre ventajas y desventajas, se concluye que es recomendable el uso de enlaces cortos siempre que sea posible.

5.3 DETALLE DEL ENLACE Y CONEXIONES

El detalle de los enlaces es un aspecto de significativa importancia para asegurar un adecuado comportamiento estructural y cumplir con los niveles de disipación de energía considerados en el diseño de pórticos arriostrados excéntricamente. Los aspectos más importantes a considerar para evitar o limitar la ocurrencia de pandeo local son: (i) control de la relación anchura-espesor, (ii) arriostramiento lateral del enlace y (iii) colocación de rigidizadores de alma con altura completa.

Los rigidizadores para enlaces de sección I deben disponerse en los extremos del enlace y en ambos lados del alma, con una anchura combinada no menor que ($b_f - 2 t_w$) y un espesor no menor que 0.75 t_w o 10mm (donde b_f es la anchura del ala del enlace y t_w es el espesor del alma del enlace). Además, en la mayoría de los casos, deben colocarse rigidizadores intermedios con una cierta separación máxima, cuya determinación depende del tipo de enlace. Las Figuras 5-14, 5-15 y 5-16 presentan detalles típicos para distintos casos.

Fig. 5-14-. Detalle del enlace en la zona central de la viga con riostras formadas por secciones I.

La determinación de la separación máxima, a, entre rigidizadores intermedios para enlaces de sección I se realiza según el siguiente criterio.

• Enlaces cortos, $e \le 1.6 M_p/V_p$:

 $\begin{array}{l} a=30\ t_w-d/5\ para\ rotaciones\ de\ enlace\ \gamma_p=0.08\\ a=52\ t_w-d/5\ para\ rotaciones\ de\ enlace\ \gamma_p=0.02\\ donde\ d\ es\ la\ altura\ total\ de\ la\ viga.\\ Para\ casos\ de\ rotaciones\ con\ valores\ intermedios\ se\\ debe\ interpolar\ linealmente.\\ \end{array}$

• Enlaces largos, $e \ge 2.6 M_p/V_p$: $a = 1.5 b_f$

donde b_f es la anchura del alma de la viga.

- Enlaces intermedios, 1.6 M_p/V_p < e <6 M_p/V_p: La separación máxima a debe cumplir simultáneamente los límites indicados para enlaces cortos y largos.
- No es necesario disponer rigidizadores intermedios en el caso de que e > 5 M_p/V_p. (esta situación de enlaces muy largos raramente se presenta en la práctica).

Fig. 5-15. Detalle del enlace en la zona central de la viga con riostras formadas por secciones tubulares.

Fig. 5-16. Detalle del enlace y conexión reforzada a la columna.

Los rigidizadores intermedios deben ser de altura completa y pueden colocarse en un solo lado del alma cuando su altura es menor de 635mm. Caso contrario deben disponerse en ambos lados del alma. En el primer caso la anchura del rigidizador no deber ser menor que $(b_f / 2 - t_w)$ y para el segundo caso no menor que $(b_f - 2 t_w)$. El espesor del rigidizador no debe ser menor que 0.75 t_w o 10mm.

La resistencia requerida de los cordones de soldadura que conectan el rigidizador con el alma del enlace es $F_y A_{st}$ (donde A_{st} es el área horizontal del rigidizador) y la de los cordones que conectan con las alas es $F_y\,A_{st}\,/\,4.$

Los rigidizadores para enlaces de sección cajón deben disponerse en los extremos del enlace y en ambos lados del alma, y pueden soldarse en las caras externas o internas del enlace. Los rigidizadores deben tener individualmente una anchura no menor que b/2 (donde b es la anchura interior de la sección cajón) y un espesor no menor que 0.75 t_w o 13mm. La determinación de la separación máxima, a, entre rigidizadores intermedios se realiza según el siguiente criterio.

• Enlaces cortos, e $\leq 1.6 \text{ M}_{p}/\text{V}_{p}$, con $h/t_{w} \leq 0.64 \sqrt{\frac{E}{F_{y}}}$:

 $a = 20 t_w - (d-2t_f)/8$

• Enlaces cortos, $e \le 2.6 \text{ M}_{p}/\text{V}_{p}$, con $h/t_{w} < 0.64 \sqrt{E/F_{y}}$ no se requieren rigidizadores intermedios.

 Enlaces con e> 1.6 M_p/V_p no se requieren rigidizadores intermedios.

5.4 DISEÑO DE PÓRTICOS ARRIOSTRADOS EXCENTRICAMENTE

5.4.1 Aspectos generales

Las especificaciones ANSI/AISC 341-10 incluyen requerimientos detallados para un único tipo de pórticos arriostrados excéntricamente, que se caracteriza por una elevada capacidad de deformación inelástica. El factor de modificación de respuesta se adopta como R=8.

En las conexiones de los miembros, con excepción de los enlaces, se permiten pequeñas excentricidades cuya magnitud no debe exceder la altura de la viga. En esos casos se requiere que los esfuerzos resultantes de esa excentricidad (momento flector y corte) sean considerados en el diseño y que su efecto no altere la capacidad de deformación inelástica.

La resistencia requerida en riostras, columnas, vigas (fuera de la zona de enlace) y conexiones se obtiene de aplicar las combinaciones de carga sísmica amplificada. Para determinar el efecto de la acción sísmica incluyendo sobrerresistencia, E_{mh} (ver Sección 2.5.2) se debe considerar que los esfuerzos en los extremos del enlace correspondientes a la resistencia a corte ajustada. Esta resistencia se determina como R_y veces la resistencia nominal a corte, V_n , multiplicada por 1.25, para el caso de secciones I, o 1.40 para secciones tipo cajón.

5.4.2 Enlaces

El enlace se diseña de acuerdo a lo indicado en las secciones previas, en lo que se refiere a la evaluación de la resistencia de diseño, determinación de la rotación del enlace, rotación admisible y disposición de rigidizadores. Los enlaces son considerados zonas protegidas y sólo se permite la soldadura de los rigidizadores en dicha zona. No se permite el uso de tubos de acero de sección rectangular (HSS), solo secciones I o secciones cajón armadas.

Los extremos de los enlaces deben arriostrarse lateralmente, tanto a nivel del ala superior como del ala inferior. La resistencia y rigidez requerida de cada arriostramiento lateral debe cumplir las condiciones iguales a las indicadas para las rótulas plásticas de pórticos (Sección D1.2, ANSI/AISC 341-10).

5.4.3 Relaciones anchura-espesor

Las riostras y vigas del pórtico deben cumplir con las condiciones de miembros de moderada ductilidad, mientras que la columnas deben diseñarse como miembros de ductilidad elevada.

5.4.4 Conexiones

Las conexiones en ambos extremos de las riostras deben diseñarse con una resistencia requerida igual, como mínimo, a la resistencia requerida de las riostras. Además, deben cumplir con los requisitos de resistencia a compresión especificados para conexiones de riostras en pórticos especiales arriostrados concéntricamente (ver Sección 4.4.5).

Las conexiones viga-columna deben cumplir con las especificaciones correspondientes a conexiones de pórticos no arriostrados especiales (ver Sección 4.5.6), esto es que se diseñan como conexiones simples (con capacidad de rotación de 0.025 rad. como mínimo) o bien como conexiones a momento, con una resistencia requerida indicada por el reglamento.

Las conexiones soldadas deben considerarse como soldaduras de demanda crítica en los siguientes casos:

- Soldaduras de ranura en empalmes de columnas.
- Soldaduras en conexiones columna-chapa base.
- Soldaduras en conexiones viga-columna.
- Soldaduras en conexiones enlace-columa (caso ilustrado en Figura 5-16).
- Soldaduras en juntas alma-ala de vigas armadas que se conectan con el enlace.

En el caso de que los arriostramientos se dispongan de manera que se tienen conexiones enlace-columna (como la ilustrada en la Figura 5-16), dicha conexión debe ser totalmente restringida (FR), capaz de resistir la rotación inelástica que se genera en el enlace y diseñarse con una resistencia a corte de $R_y V_n$, como mínimo, y una resistencia a flexión al menos igual al momento que se genera cuando el enlace desarrolla su resistencia nominal a corte, V_n . Además, la conexión debe ser precalificada, en forma similar a las conexiones viga-columna en pórticos no arriostrados (ver Sección 3.1.2).

5.4.5 Sistemas duales

Los pórticos especiales arriostrados excéntricamente pueden usarse en combinación con pórticos no arriostrados especiales, formando un sistema de muy buen desempeño estructural. Se requiere que los pórticos no arriostrados resistan al menos el 25% del corte basal. El factor de modificación de respuesta se adopta como R=8.

Los sistemas duales pueden generarse mediante la combinación de dos tipos estructurales distintos en un mismo plano resistente o bien cuando se combinan planos resistentes de distinto tipo en una estructura espacial.

Capítulo 6 Pórticos con riostras de pandeo restringido

6.1 ASPECTOS GENERALES

Los pórticos con riostras de pandeo restringido (BRBF, por las siglas en inglés de *buckling-restrained braced frame*) son un caso particular de los pórticos arriostrados concéntricamente, considerados en el Capítulo 4. En ambos casos, la estructura se diseña para que los ejes de los miembros componentes se corten en un punto, formando así conexiones concéntricas (como se muestra en la Figura 6-1). La diferencia fundamental entre estos sistemas surge de la mayor ductilidad y capacidad de disipar energía que aportan las riostras de pandeo restringido.

Fig. 6-1. Ejemplo de un pórtico con riostras de pandeo restringido donde se observa que la conexión es concéntrica.

Las riostras, como se describió brevemente en la Sección 2.7.5, están formadas por un núcleo de acero que puede adoptar distintas configuraciones; las más usuales son las secciones circular, rectangular, cuadrada o cruciforme, ver Figura 6-2, si bien en Japón se han ensayado otras secciones (por ejemplo incluyendo perfile H o tubos). El tubo exterior de acero usualmente tiene sección circular o cuadrada. La capa antiadherente que recubre el núcleo de acero cumple funciones importantes para lograr un adecuado desempeño de las riostras. En primer lugar, y como su nombre lo indica, dicha capa debe permitir que la barra o elemento central se deforme axialmente sin interferir con el tubo exterior y el relleno de mortero. Adicionalmente, la capa debe tener un cierto espesor y flexibilidad para permitir la dilatación lateral del núcleo (efecto Poisson) cuando es comprimido por efecto de la acción sísmica. Si dicha dilatación es restringida, se produce una interacción con el mortero de relleno y se transfiere carga axial al tubo exterior, lo cual resulta en un aumento de la resistencia a compresión. Sin embargo, la capa antiadherente no puede ser demasiado flexible, caso contrario se podría producir el pandeo global de la barra central o el pandeo local (dependiendo del tipo de sección). De modo que debe llegarse a una situación de compromiso, para permitir la expansión lateral y simultáneamente controlar el pandeo de la barra central.

Fig. 6-2. Secciones típicas de las riostras de pandeo restringido.

No se dispone en la literatura técnica de información precisa acerca de las características de la capa antiadherente porque las riostras de pandeo restringido, producidas por distintos fabricantes de Japón y USA, están protegidas por patentes comerciales. A modo de ejemplo, las Figuras 6-3 y 6-4 muestran riostras fabricadas por las empresas Star Seismic y Core Brace, respectivamente. La Figura 6-5 ilustra un proyecto realizado en Japón con una riostra patentada, denominada "Unbonded Brace".

Fig. 6-3. Riostra de pandeo restringido fabricada por la empresa Sart Seismic (http://www.starseismic.net/).

Fig. 6-4. Riostra de pandeo restringido fabricada por la empresa Core Brace (http://www.corebrace.com/).

Fig. 6-5. Aplicación de riostras de pandeo restringido en un edificio en Japón, Sankyo New Tokyo Headquarter (<u>http://www.unbondedbrace.com/</u>).

También se han diseñado e implementado soluciones que no están protegidas por patentes comerciales y que podrían implementarse sin mayores requerimientos tecnológicos en países Latinoamericanos. Palazzo et al. (2009) propusieron y ensayaron riostras formadas por un núcleo de sección circular sobre el cual se adhirió una capa de TeflónTM, luego se aplicó una delgada capa de grasa y finalmente una recubrimiento de NeoprenoTM de 1.7 mm de espesor para permitir la dilatación lateral. Los ensayos dinámicos de las riostras bajo carga axial cíclica permitieron verificar el adecuado comportamiento de las riostras así construidas.

6.2 COMPORTAMIENTO ESTRUCTURAL DE LAS RIOSTRAS DE PANDEO RESTRINGI-DO

La característica distintiva de las riostras de pandeo restringido es que pueden fluir en tracción y compre-

sión, evitando la ocurrencia del pandeo, ya sea global o local. La Figura 6-6 muestra la respuesta histerética para una riostra de pandeo restringido (línea azul) en comparación con el ciclo de una riostra típica (línea roja). Se puede observar que las diferencias significativas se producen cuando las riostras se someten a compresión. La riostra de pandeo restringido presenta un comportamiento prácticamente igual en tracción y compresión, mientras que las riostras típicas presentan degradación de rigidez y resistencia por efecto del pandeo, reduciendo significativamente su capacidad de disipar energía. Es importante aclarar que la resistencia a compresión de la riostra puede ser mayor que la resistencia a tracción, debido a que el núcleo de acero se expande cuando es sometido a compresión. De ese modo, si la capa antiadherente no pude absorber totalmente dicha expansión, se transfiere carga al mortero de relleno y al tubo exterior, con lo cual incrementa la resistencia a compresión de la riostra.

Fig. 6-6. Comparación de los ciclos de histéresis (fuerza axial-desplazamiento) de una riostra típica con una riostra de pandeo restringido (BRB).

Los principales modos de falla de una riostra de pandeo restringido son:

- Pandeo flexional del núcleo de acero.
- Pandeo flexional del núcleo en modos altos de pandeo (en la bibliografía en inglés, este modo de falla se suele denominar como *rippling*).
- Pandeo torsional del núcleo en los extremos libres del núcleo o zona de transición.
- Pandeo local en los extremos libres del núcleo o zona de transición.
- Falla de la conexión.

Los dos primeros modos de falla, vinculados al pandeo flexional del núcleo, se explican gráficamente en la Figura 6-7. En particular, resulta de interés discutir el pandeo en modos altos. Este tipo de pandeo, teóricamente, podría producirse en cualquier miembro comprimido, según explica la teoría de Euler, que predice la carga crítica P_E de una columna sin imperfecciones, biarticulada y de material lineal y elástico a partir de la ecuación:

$$P_E = \frac{n^2 \pi^2 EI}{L^2} \tag{6-1}$$

donde EI representa la rigidez flexional del miembro comprimido, L su longitud y n es un entero mayor que 0. De todas las cargas críticas definidas por la Ecuación 6-1, la más importante es la menor, que corresponde al caso n=1. Las cargas críticas correspondientes a los casos en que n>1, presentan valores mayores e implican deformadas de pandeo que requieren mayor energía para producirse, por lo cual no tienen importancia práctica en el diseño de columnas y otros miembros comprimidos (antes se produce el pandeo flexional según la deformada del primer modo de pandeo, n=1). Sin embargo, en el caso de riostras de pandeo restringido, el núcleo está confinado en un medio elástico (capa antiadherente y mortero de relleno), por lo cual el pandeo flexional en modos altos es posible. Los resultados obtenidos tanto de ensayos experimentales como de simulaciones numéricas confirman esta posibilidad.

Fig. 6-7. Modos de falla por pandeo flexional del núcleo de acero.

La Figura 6-8 muestra el estado final del núcleo central de riostras de pandeo restringido, luego de remover el tubo exterior y el mortero de relleno con fines de observación (Palazzo et al., 2009). Estos resultados muestran claramente la ocurrencia del pandeo flexional en modos altos debido a la deformabilidad y espesor excesivo de la capa antiadherente utilizada en dichas pruebas. Las verificaciones experimentales realizadas permitieron diseñar adecuadamente riostras de pandeo restringido, en particular las características de la capa antiadherente, para evitar este problema. Adicionalmente a las verificaciones experimentales, se realizaron simulaciones numéricas con modelos refinados de elementos finitos no lineales (Palazzo y Crisafulli, 2007), para estudiar el problema y validar los resultados experimentales. La Figura 6-9 presenta la deformada obtenida en una de esas simulaciones, observándose la capacidad del modelo para reproducir la respuesta experimental. Para más detalles sobre este modo de falla se puede consultar la referencia de Black et al., (2002), quienes describen el fenómeno y presentan ecuaciones para su consideración matemática.

Fig. 6-8. Vista del núcleo de acero de riostras de pandeo restringido ensayadas por Palazzo et al. (2009).

El pandeo torsional del núcleo de acero es otro posible modo de falla por tratarse de una barra comprimida axialmente, cuya sección transversal, usualmente, presenta doble eje de simetría. Este tipo de falla podría producirse en los extremos de la riostra, en la zona libre comprendida entre la conexión y el extremo del tubo exterior. Esta zona se representa gráficamente en la Figura 6-10, donde se observa el tramo libre del núcleo de acero, de longitud Le, y la zona de transición, de longitud L_t. El tramo libre es necesario para permitir el alargamiento y acortamiento del núcleo de acero, si bien se diseña con un valor mínimo para evitar fenómenos de pandeo en esa zona. Con igual criterio se define la zona de transición que permite pasar, sin variaciones bruscas, de la sección transversal del núcleo de acero a la sección (usualmente mayor) donde la riostra se conecta con el resto de la estructura. Las secciones transversales del núcleo con forma rectangular, cuadrada o cruciforme (ver Figura 6-2) presentan ventajas para evitar la ocurrencia del pandeo torsional, dado que el mortero de relleno impide el giro del núcleo dentro del tubo.

Fig. 6-9. Simulación numérica realizada por Palazzo y Crisafulli (2007) para estudiar el pandeo flexional en modos altos.

Fig. 6-10. Detalle del extremo de una riostra de pandeo restringido, donde se observa el extremo libre del núcleo y la zona de transición.

El pandeo local también podría ocurrir en la zona de longitud $L_e + L_t$ (ver Figura 6-10), por lo que resulta necesario controlar las relaciones anchura-espesor en dicha zona. Finalmente, se puede producir la falla de la conexión, para lo cual es necesario un diseño adecuado según los criterios reglamentarios para conexiones de estructuras sismorresistentes.

6.3 DISEÑO DE PÓRTICOS CON RIOSTRAS DE PANDEO RESTRINGIDO

6.3.1 Aspectos generales

Las especificaciones sísmicas ANSI/AISC 341-10 incluyen explícitamente a los pórticos con riostras de pandeo restringido e indican que estas estructuras disponen de una elevada capacidad de deformación inelástica como resultado de la fluencia en tracción y compresión de las riostras. Estas estructuras se diseñan con un factor de respuesta R=8, que representa el valor más elevado considerado (comparable con los pórticos no arriostrados especiales y los pórticos arriostrados excéntricamente).

Las especificaciones indican que las riostras no deben ser consideradas para resistir las cargas gravitatorias.

La resistencia requerida en columnas, vigas y conexiones debe determinarse de las combinaciones de carga que incluyen el efecto de la acción sísmica amplificada. La acción sísmica amplificada considerando la sobrerresistencia estructural, E_{mh} , debe determinarse bajo la hipótesis de que las riostras desarrollan su "resistencia ajustada" en tracción y compresión. La determinación de la resistencia ajustada se explica en la Sección 6.3.3.

Las especificaciones se basan en el uso de riostras calificadas mediante ensayos, de modo de asegurar que su uso se ajusta al rango de deformaciones requerido y que se evita la ocurrencia de modos de falla no deseados.

6.3.2 Disposición de las riostras

El uso de riostras dispuestas en forma de K (ver Figura 4-13) no está permitido, por las mismas razones expuestas al describir los pórticos arriostrados concéntricamente, esto es la posibilidad de que ocurran deformaciones inelásticas en las columnas.

En el caso de usar configuraciones en V y V invertida (ver Figura 4-8), se deben cumplir con los siguientes requisitos:

- La resistencia requerida de las vigas que son interceptadas por las riostras y sus conexiones debe determinarse a partir de las combinaciones de carga reglamentarias, asumiendo que las riostras no resisten cargas muertas ni cargas vivas.
- Las vigas deben ser continuas entre las columnas del pórtico y deben arriostrarse lateralmente según los requerimientos exigidos a estructuras de ductilidad moderada. Como mínimo, se requiere un arriostramiento lateral en el punto de intersección de las riostras con la viga, a menos que ésta tenga suficiente resistencia y rigidez fuera del plano para asegurar la estabilidad.

Las configuraciones en V y V invertida presentan requerimientos adicionales en las vigas de modo que éstas tengan la resistencia adecuada para permitir que ambas riostras fluyan. Cuando las riostras se comportan en rango elástico el acortamiento de la riostra comprimida es equivalente al alargamiento de la riostra traccionada, como se representa esquemáticamente en la Figura 6-11 (a). Sin embargo, luego de que las riostras fluyen, la riostra comprimida usualmente tiene mayor resistencia que la traccionada (por las razones explicadas en la Sección 6.2), de modo que se inducen deformaciones de flexión adicionales a la viga, como se indica en la Figura 6-11 (b) para el caso de arriostramientos en V-invertida.

Fig. 6-11. Representación de la deformada de un pórtico con riostras de pandeo restringido en V invertida (a) en rango elástico y (b) luego de la fluencia.

6.3.3 Diseño de las riostras de pandeo restringido

El diseño debe realizarse de modo que las deformaciones inelásticas ocurran principalmente por fluencia de las riostras. Las especificaciones definen el diseño a partir de la resistencia ajustada de la riostra a compresión, P_{ac} , y a tracción, P_{at} , según las siguientes expresiones:

$$P_{ac} = \beta \omega R_{y} P_{ysc} \tag{6-2}$$

$$P_{at} = \omega R_y P_{ysc} \tag{6-3}$$

donde β es un factor de ajuste de la resistencia a compresión, ω es un factor de ajuste por endurecimiento de deformación y $P_{ysc} = F_y A_{sc}$ es la resistencia a tracción del núcleo de acero de la riostra de pandeo restringido. La Figura 6-12 representa el diagrama fuerzadesplazamiento en la riostra considerada en el diseño, donde se observa que las resistencias P_{ac} y P_{at} son los valores máximos que pueden desarrollarse en este tipo de riostras.

Fig. 6-12. Diagrama fuerza-deformación considerado para el diseño de las riostras.

El factor β (mayor o igual que 1.0) se calcula como la relación entre la máxima fuerza de compresión y la de tracción medidas en un ensayo realizado según los requerimientos indicado en la Sección K3.4c de las especificaciones. De modo que el diseño de las riostras se basa en la verificación de las mismas mediante ensayos. Esta verificación experimental se realiza hasta un nivel de desplazamiento axial de la riostra igual al desplazamiento inducido por una distorsión de piso del 2% o por una distorsión de piso igual a dos veces la distorsión de diseño, adoptando el mayor valor de los dos. Los comentarios de las especificaciones indican que el valor de dos veces la distorsión de piso para determinar la demanda de desplazamiento en la riostra representa el valor medio de los máximos originados por un terremoto con una probabilidad de excedencia en 50 años. Sismos con efecto de foco cercano o sismos más fuertes pueden imponer demandas de deformación mayores en la riostra. No obstante, debe considerarse que estos aumentos de demanda pueden afectar el comportamiento de las riostras, pero ello no implica una falla o colapso.

Los ensayos de verificación pueden realizarse específicamente para el proyecto en estudio o bien adoptarse ensayos realizados previamente que se encuentren debidamente documentados (este criterio es similar al aplicado para conexiones viga-columnas en pórticos no arriostrados).

El factor ω representa el efecto del aumento de resistencia por endurecimiento de deformación. Se determina de los resultados experimentales como la relación entre la resistencia máxima a tracción y la resistencia medida de fluencia R_y P_{ysc}.

El núcleo de acero de la riostra no puede presentar empalmes y debe diseñarse para resistir la carga axial actuante (resistencia requerida), adoptando como resistencia de diseño el valor ϕP_{ysc} . Esta parte de la riostra debe considerarse como zona protegida

6.3.4 Conexiones

El diseño de las conexiones de la riostra de pandeo restringido representa un aspecto de significativa importancia, y como se indicó previamente, se aplican criterios del diseño por capacidad para asegurar que las conexiones tengan la resistencia adecuada. La resistencia requerida de las conexiones de la riostra debe tomarse como 1.1 de la resistencia ajustada de la riostra, tanto en compresión como en tracción. El diseño de la conexión debe considerar el pandeo local o global, para lo cual pueden usarse los valores de fuerzas transversales medidos en los ensayos de calificación. Para resistir esta fuerza pueden disponerse rigidizadores o arriostramientos laterales.

Las conexiones viga-columna deben cumplir los mismos requerimientos indicados para los pórticos arriostrados concéntricamente, según se describió en la Sección 4.5.6. La conexión propuesta Fahnestock et al. (2006), ver Figura 4-25, representa una solución adecuada que, además, ha sido verificada experimentalmente.

Las especificaciones requieren que se consideren como soldaduras de demanda crítica las siguientes:

- Soldadura de ranura en empalmes de columna.
- Soldaduras en conexiones columna-base.
- Soldadura en conexiones viga-columna.

6.4 APLICACIÓN A LA REHABILITACIÓN ESTRUCTURAL

Las riostras de pandeo restringido representan una buena alternativa para la rehabilitación sísmica de estructuras, y de hecho hay numerosos ejemplos de su aplicación con este objetivo (ver Figura 6-13).

Fig. 6-13. Aplicación de riostras de pandeo restringido para la rehabilitación del edificio de la Biblioteca Marriott de la Universidad de Utah.

En la Sección 4.7 se describieron las ventajas del uso de riostras para la rehabilitación sísmica. En el caso particular de utilizar riostras de pandeo restringido, debe considerarse además que se logra un mejor mecanismo de disipación de energía y que se evitan los fenómenos de pandeo global o local, típicos en las riostras convencionales. El pandeo puede generar daños permanentes en las riostras y por ende, la necesidad de realizar reparaciones luego de un sismo severo.

Como ya se mencionó en la Sección 4.7, debe estudiarse cuidadosamente la conexión de la riostra con la estructura existente, dado que deben transferirse fuerzas axiales, tanto en tracción como en compresión.

Capítulo 7 Muros de corte con placas de acero

7.1 ASPECTOS GENERALES

7.1.1 Descripción del sistema

Los muros de corte con placas de acero se han usado desde hace varias décadas en Japón y Estados Unidos de América, y más recientemente en Canadá y México, si bien su incorporación explícita en las reglamentaciones AISC data del año 2005. La Figura 7-1 muestra fotografías de un edificio que incorpora este tipo de muros como sistema estructural sismorresistente. Los muros de corte con placas de acero se emplean no solo para construcción de edificios en altura, sino también para viviendas y edificios residenciales de 2 o 3 pisos.

Fig. 7-1. Edificio U.S. Federal Courthouse, Seatle, que incorpora muros de corte con placas de acero, (a) vista general y (b) construcción de los muros (Sabelli y Bruneau, 2006).

La Figura 7.2 muestra los elementos principales de un muro sin aberturas; allí se indican los elementos de borde (HBE y VBE) y las placas de acero que conforman el alma del muro, también denominadas paneles o placas de relleno (*infill plates*) por algunos autores.

Fig. 7-2. Elementos componentes de un muro con placas de acero sin aberturas.

Las ventajas principales de este sistema estructural, además de las propias de las construcciones de acero, son:

- la elevada rigidez y resistencia que confieren las placas de alma
- el consumo relativamente bajo de acero por la utilización de dichas placas, dado que tienen espesor relativamente pequeño.
- el uso de conexiones sencillas para vincular la placa con los elementos de borde.
- La posibilidad de incorporar aberturas para puertas, ventanas o perforaciones para el paso de tuberías u otras instalaciones.

En comparación con los muros de hormigón armado, se caracterizan por su rapidez de construcción y una masa significativamente menor, si bien los muros con placas de acero presentan menor rigidez lateral debido a la esbeltez de la placa. Es importante considerar también que se han desarrollado métodos de análisis y diseño simples y confiables, de modo que no son necesarios procedimientos complejos.

7.1.2 Tipos de muros de corte con placas de acero

Los muros pueden clasificarse o agruparse en varios tipos según distintos aspectos. Desde el punto de vista estructural, se pueden clasificar en (i) muros con placas no rigidizadas y (ii) muros con placas rigidizadas. Éstos últimos, a su vez, se subdividen, en placas con rigidización completa o parcial. La función principal de los rigidizadores es demorar o evitar la ocurrencia del pandeo local o abollamiento de la placa de alma. Se considera que la rigidización es completa cuando se evita el pandeo local y permite que la placa fluya como consecuencia de las tensiones de corte inducidas por la acción sísmica; caso contrario, la rigidización es parcial.

En el caso de muros con placas rigidizadas, los rigidizadores pueden disponerse en posición vertical, horizontal o en ambas direcciones. La Figura 7-3 presenta imágenes de dos muros de corte con distintos tipos de rigidizadores.

Fig. 7.3. Imágenes de muros de corte con (a) rigidizadores horizontales y (b) rigidizadores verticales y horizontales (Sabelli y Bruneau, 2006).

Las primeras investigaciones y aplicaciones a edificios se realizaron con placas de almas sólidas, esto es sin ninguna perforación. Sin embargo, a medida que el sistema se difundió y se aplicó a construcciones de baja altura se observó la necesidad de disminuir la resistencia y rigidez de estos muros de corte. Una alternativa para este problema es usar placas de reducido espesor (chapas finas), pero los ensayos indican que tal material presenta propiedades muy variables y por lo tanto no es una solución confiable. Otra alternativa, incluida en el reglamento ANSI/AISC 341-10 en su edición del año 2010, es realizar una serie de perforaciones circulares que se distribuyen en toda la superficie de la placa de alma según patrón regular, como se indica en la Figura 7-4. Estas perforaciones permiten reducir la resistencia y rigidez de todo el muro y además, pueden usarse en caso de ser necesario para el paso de tuberías y otras instalaciones. La Figura 7.5 muestra un muro de corte con placas de acero perforadas ensayado por Vian y Bruneau (2004).

Fig. 7.4. Muro de corte con placas de acero y perforaciones circulares.

Fig. 7.5. Muro de corte con placas de acero y perforaciones de esquina (Vian y Bruneau, 2004)

Otra tipo particular de muro de corte con placas de acero son aquellos con esquinas perforadas y reforzadas, como se ilustra en la Figura 7-6. En este caso, se realiza un corte de un cuarto de círculo en las esquinas superiores de la placa de alma para permitir el paso de
tuberías o instalaciones. El borde curvo del corte se refuerza con una planchuela soldada. Los resultados experimentales indican que la rigidez y resistencia del muro de corte son similares a las correspondientes al muro con placas solidas (sin perforaciones), siempre que el radio del corte sea inferior a un tercio de la altura libre de la placa de alma. La planchuela de refuerzo, soldada al borde de la perforación se comporta como un arco circular. En la Figura 7-7 se muestra la imagen de un muro con este tipo de perforación de esquina, luego de haber sometido a un ensayo de cargas laterales (Vian y Bruneau, 2004).

Fig. 7.6. Muro de corte con placas de acero y perforaciones de esquina.

Fig. 7.7. Detalle de la perforación de esquina en un muro de corte con placas de acero ensayado por Vian y Bruneau (2004).

Los muros de corte con placas de acero pueden construirse con aberturas en las placas de alma, en aquellos casos que los requerimientos funcionales o arquitectónicos así lo requieren. Las aberturas deben disponer de elementos intermedios de borde que rodeen totalmente su perímetro, como se muestra en la Figura 7-8, donde se presentan muros con abertura para una ventana y una puerta. De esta forma, la placa de alma queda divida en una serie de subplacas menores, cada una de las cuales está adecuadamente delimitada por elementos de borde. La razón principal de aplicar este criterio se debe a que en la actualidad no se dispone de información experimental de muros con aberturas sin elementos de borde.

Fig. 7.8. Esquemas de muros de corte con aberturas para puertas o ventanas.

En la Tabla 7-1 se presentan un resumen de los tipos de muros descriptos en esta sección, agrupados según la forma de rigidización y el tipo de aberturas o perforaciones. Las distintas alternativas indican claramente las posibilidades de este sistema estructural que puede adaptarse para cubrir una amplia gama de situaciones diferentes.

Tabla 7-1. Tipos de muros de cortes con placas de
acero.

Muros de corte con placas de acero	Sin rigidizadores Con rigidizadores (rigidización completa o parcial)
	Quildes
Muros de corte con placas de acero	Solidos
	Con perforaciones circulares
	Con perforaciones de esquina
	Con aberturas (puertas o ventas)

7.1.3 Configuraciones de los muros

Las placas de alma pueden disponerse según distintas configuraciones, a través de las cuales se puede modificar o ajustar el comportamiento global de la estructura. La Figura 7.9 muestra dos ejemplos típicos. En el primero, caso (a), las placas se disponen para conformar dos muros acoplados, en forma similar a muros acoplados de hormigón armado. Las vigas de acople vinculan ambos muros y genera esfuerzos axiales de tracción y compresión en los mismos. El caso (b) representa una estructura dual, pórtico-muro, que combina las ventajas de ambos sistemas. Las vigas permiten transferir parte del momento de vuelco hacia las columnas exteriores.

En la Figura 7-10 se representan algunas configuraciones alternativas, a modo de ejemplo, para mostrar la flexibilidad del sistema. Estas configuraciones pueden usarse por razones funcionales para permitir circulaciones, para lograr una construcción más económica o bien para mejorar ciertos aspectos de la respuesta estructural. Sin embargo, el diseñador debe ser consciente de que estas configuraciones pueden generar discontinuidades de rigidez y resistencia, originando así concentraciones de demanda en algunos de los miembros de la estructura por la necesidad de transferir esfuerzos desde una panel hacia otro. Estos efectos deben analizarse cuidadosamente al realizar el diseño.

Fig. 7.9. Configuraciones para muro de corte con placas de acero.

7.2 COMPORTAMIENTO ESTRUCTURAL

El comportamiento estructural de los muros de corte con placas de acero se caracteriza, como todos los sistemas de muros, por su elevada rigidez y resistencia en comparación con un pórtico de similares características geométricas. Bajo la acción de cargas sísmica, los muros de corten pueden disipar energía, principalmente, por la fluencia de la placa de alma. La fluencia se desarrolla por un mecanismo de acción de campo de tracción diagonal, con un ángulo de aproximadamente 45°, mientras que en la dirección perpendicular la placa pandea a niveles bajos de carga (debido a la esbeltez de la placa). La Figura 7-11 muestra la placa de acero de un muro ensayado por Berman y Bruneau (2003), donde se observa claramente la fluencia por tracción diagonal y el pandeo de la chapa de alma originado por las tensiones principales de compresión. Los ensayos indican que la placa de alma puede experimentar grandes deformaciones inelásticas en tracción y compresión. En algunos casos se ha observado problemas de fractura del acero, por ejemplo en las esquinas del panel, donde se pueden producir demandas elevadas.

La respuesta estructural es muy adecuada, con ciclos de histéresis estables, sin degradación de rigidez o resistencia y con una excelente capacidad de disipación de energía, aun cuando se produzca el pandeo de la placa de alma. La Figura 7-12 muestra la respuesta cíclica de un muro de corte ensayado bajo cargas laterales que simulan la acción del sismo.

Fig. 7.10. Configuraciones alternativas para muro de corte con placas de acero.

Fig. 7-11.Vista de la placa de acero, con clara evidencia de fluencia y pandeo, en ensayos realizados por Berman y Bruneau (2003).

Las placas de alma se construyen con espesores reducidos, de modo que su esbeltez es muy elevada. En las primeras aplicaciones de este sistema estructural se usaron placas con esbelteces que variaban entre 300 y 800. Sin embargo, a medida que se profundizaron las investigaciones y se realizaron más ensayos de laboratorios las esbelteces fueron creciendo. Actualmente, se dispone de información experimental sobre muros con esbelteces de hasta 3500, los cuales han exhibido un comportamiento satisfactorio.

Fig. 7-12. Respuesta histerética de un muro de corte con placas de acero ensayado por Vian y Bruneau (2004).

Los elementos de borde vertical y horizontal, VBE y HBE, se conectan en forma rígida (conexiones totalmente restringidas, FR), de modo que pueden formarse rótulas plásticas en los elementos horizontales, en forma análoga a un pórtico no arriostrado. Los resultados experimentales indican que puede producirse pandeo local en las rótulas plásticas cuando el muro de corte desarrolla ductilidades elevadas. En ensayos realizados por Vian et al (2009a) se observó la fractura parcial del elemento de borde horizontal, lo cual produjo una disminución de la capacidad resistente de la estructura a un nivel de distorsión de piso del 3%. Sin embargo, se pudo continuar el ensayo incrementando el desplazamiento lateral debido a la redistribución de esfuerzos resultante de la redundancia estructural del sistema.

Es importante mencionar que la presencia de tensiones de compresión elevadas, originadas por las cargas gravitatorias, pueden demorar el desarrollo de la acción de campo por tracción y afectar la respuesta estructural. Es por ello que debe planificarse adecuadamente la secuencia constructiva, particularmente en edificios elevados, con el fin de colocar las placas de acero una vez que las cargas muertas están efectivamente aplicadas sobre la estructura.

7.3 ANALISIS ESTRUCTURAL

El dimensionamiento de los componentes del muro de corte con placas de acero requiere de modelos que permitan determinar los esfuerzos en los elementos de borde y las tensiones en la placa. Además, el análisis permite evaluar los desplazamientos laterales a los efectos de cumplir con las limitaciones reglamentarias para controlar las distorsiones de piso. Los métodos de análisis más usuales son el método de las bandas y el método de la membrana ortótropa. Este último requiere de software específico para su aplicación y no todos los programas de análisis estructural de uso profesional incluyen esta alternativa. Otra opción es el uso del método de los elementos finitos para modelar los componentes de borde y las placas de acero. Esta metodología es más general y permite representar casos más complicados, como por ejemplo por la presencia de aberturas u otras irregularidades.

El método de las bandas fue introducido por Thorburn, en 1983, y luego desarrollado y mejorado por muchos otros investigadores (según lo indicado por Sabelli y Bruneau, 2006). Este procedimiento se basa en el comportamiento observado de la placa de acero (ver Figura 7-13), de modo que la misma es reemplazada por una serie de barras diagonales paralelas rigidez y resistencia sólo a tracción, según se representa en la Figura 7-14. La comparación de resultados obtenidos con este modelo y los datos experimentales muestra una buena concordancia en la medida que el modelo se formule adecuadamente. Para ello es fundamental considerar 10 bandas de tracción como mínimo y definir el ángulo de inclinación α , según se indica en párrafos subsiguientes.

Fig. 7-13.Esquema del comportamiento estructural de la placa una vez que se desarrolla la acción de campo por tracción.

Fig. 7-14. Modelo de un muro de corte con placas de acero según el método de las bandas.

La resistencia de diseño a corte, $V_d = \phi V_n$, se determina considerando ϕ =0.90 y la resistencia nominal para el estado límite de fluencia por corte igual a:

$$V_n = 0.42 F_v t_w L_{cf} \operatorname{sen}(2\alpha)$$
 (7-1)

donde t_w es el espesor del alma, L_{cf} es la distancia libre entre elementos de borde vertical y α es un ángulo definido por:

$$\tan^{4} \alpha = \frac{1 + \frac{t_{w} L}{2 A_{c}}}{1 + t_{w} h \left(\frac{1}{A_{b}} + \frac{h^{3}}{360 I_{c} L}\right)}$$
(7-2)

donde A_b es el área de HBE, A_c el área de VBE, h la distancia entre ejes de HBE y L la distancia entre ejes

de VBE. En la Figura 7-15 se definen las variables dimensionales utilizadas en las expresiones previas.

Fig. 7-15. Esquema de un muro de corte con la definición de las variables dimensionales.

La presencia de aberturas puede generar concentraciones de tensiones y en consecuencia demandas localizadas. Es por ello que se requiere que las aberturas se rodeen de componentes de bordes, como se indica esquemáticamente en la Figura. 7-8. El método de las bandas puede aplicarse también en estos casos, para lo cual debe considerarse los elementos intermedios de borde y representarse las bandas de tracción en cada uno de los subpaneles en que queda dividido el muro.

Fig. 7-16. Modelación con elementos finitos de muros de corte con placas de acero sólida y perforada (Vian et al., 2009b).

El análisis estructural también puede realizarse mediante procedimientos más refinados, como el método de los elementos finitos. A modo de ejemplo, la Figura 7-16 muestra modelos desarrollados por Vian et al. (2009b), para el análisis de muros con placas de acero sólidas y perforadas. En general, este tipo de modelos se usan en trabajo de investigación o en casos particulares que requieren una verificación precisa. A los efectos del diseño, se pueden aplicar los procedimientos simplificados descriptos previamente.

7.4 CONEXIONES Y ASPECTOS CONSTRUC-TIVOS

La construcción de muros de corte con placas de acero no presenta particularidades o complicaciones con respecto a otros tipos estructurales. Sin embargo, las conexiones entre las placas de acero y los elementos de borde vertical y horizontal representan un aspecto importante a considerar en el diseño, no solo por su función estructural, sino también por el impacto económico que puede tener en la construcción. Estas conexiones se pueden realizar mediante soldaduras o pernos.

Las conexiones apernadas, si bien son siempre recomendables para ejecutar en obra por su rapidez, pueden presentar desventajas en este caso particular. Para asegurar que la placa de acero desarrolle su resistencia a tracción y fluya en tracción es necesario colocar un gran número de pernos, lo cual puede disminuir excesivamente la sección neta y conducir a una fractura en la zona de la conexión. Es por esta razón, que la conexión entre la placa y los elementos de borde se realiza usualmente con soldadura. La Figura 7-17 muestra un detalle típico para soldar en obra la placa de alma, utilizando para ello una placa base o auxiliar (en inglés se denomina *fish plate*) que viene soldada de taller a los elementos de borde.

Fig. 7-17. Detalle típico de conexión soldada entre los elementos de borde y la placa de alma.

Alternativamente, la conexión entre la placa de acero y los elementos de borde puede realizarse mediante una junta con pernos, según se indica en la Figura 7.19. Es importante observar que, en este caso, usualmente se requiere reforzar el borde de la placa de alma mediante una chapa soldada. De esta forma se logra aumentar la resistencia al aplastamiento en la junta, dado que se incrementa el espesor de la placa de alma.

Fig. 7-18. Detalle de conexión apernada entre los elementos de borde y la placa de alma.

Otro aspecto distintivo de los edificios con muros de corte con placas de acero es la necesidad de disponer muros en direcciones ortogonales, por ejemplos en los núcleos de circulaciones. En esos casos, es usual que los elementos de borde vertical deban disponerse en la intersección de dos muros de corte perpendiculares, con lo cual se produce una complicación constructiva y de diseño. La Figura 7-19 muestra dos ejemplos de conexión para solucionar esta dificultad. En uno de los casos el elemento de borde vertical está formado por un perfil I, el cual se refuerza con dos placas laterales soldadas para formar una sección cajón. Otra alternativa es construir una sección cajón con cuatro placas soldadas en las esquinas. En ambos casos, se disponen placas bases en las caras laterales, a la cuales se sueldan las placas de alma de los muros.

Se observa en los detalles de la Figura 2-19 que la placa de alma puede introducir esfuerzos concentrados de flexión y corte en las caras de la sección cajón que conforma el elemento de borde vertical (VBE). Es por ello que, en ciertos casos, puede resultar necesario utilizar el detalle indicado en la Figura 7-20, en donde la placa base se prolonga hasta el centro de la sección cajón (y se suelda al alma del perfil I) para lograr una mejor transferencia de los esfuerzos concentrado que induce la placa de alma del muro.

Finalmente, es importante resaltar que deben extremarse los recaudos constructivos para asegurar que la placa de alma se coloque precisamente en el eje del pórtico formado por los elementos de borde horizontal y vertical. Ello es necesario para eliminar excentricidades accidentales que inducen esfuerzos de flexión en la placa.

Fig. 7-19. Ejemplos de elementos de borde vertical en la intersección de muros de corte perpendiculares.

Fig. 7-20. Detalle de un elemento de borde vertical en la intersección de muros de corte perpendiculares, para evitar esfuerzos concentrados.

En la base de los muros de corte debe disponerse una viga de fundación para que la placa de alma esté conectada en todos sus bordes y de esa forma pueda desarrollar su resistencia. La viga de fundación puede ser de acero o bien de hormigón armado. En este último caso se debe diseñar un detalle adecuado que permita vincular la placa de acero con la viga.

7.5 DISEÑO DE MUROS DE CORTE CON PLA-CAS DE ACERO

7.5.1 Aspectos generales

Las especificaciones AISC 341-10 indican los requerimientos para el diseño de muros de corte especiales con placas (*special, plate shear walls*, SPSW). El criterio de diseño se basa en que la estructura presenta una elevada capacidad de disipación de energía a través de la fluencia de la placa de alma y de la formación de rótulas plásticas en los extremos de los elementos de borde horizontal (HBE). El factor de respuesta en este caso es R = 7.

La resistencia requerida en los elementos de borde (HBE y HBE) y de las conexiones debe realizarse a partir de las combinaciones de cargas reglamentarias, que incluyen el efecto de la acción sísmica amplificada. La acción sísmica amplificada considerando la sobrerresistencia estructural, E_{mh} , debe determinarse bajo la hipótesis de que:

- la placa de alma desarrolla su resistencia esperada a tracción con un ángulo α definido por la Ecuación 7-2.
- Los extremos de los elementos horizontales desarrollan su resistencia esperada a flexión igual a 1.1 R_y M_p.

Las placas de acero de alma no deben considerarse para resistir las cargas gravitatorias.

Es importante mencionar que la edición del año 2005 del ANSI/AISC 341 incluía limitaciones para la relación L/h del panel de acero (se requería que esta relación estuviera comprendida entre 0.8 y 2.5). Sin embargo, este requerimiento fue eliminado de la edición 2010 a la luz de investigaciones experimentales y analíticas recientes.

7.5.2 Elementos de borde

Las especificaciones sísmicas requieren que el momento de inercia de los elementos de borde vertical respecto de un eje perpendicular al plano del muro, Ic, cumpla con la siguiente condición:

$$I_{c} \ge \frac{0.0031 t_{w} h^{4}}{L}$$
 (7-3)

Adicionalmente, las especificaciones indican un valor mínimo del momento de inercia de los elementos de borde horizontal respecto de un eje perpendicular al plano del muro, I_b , en el caso que la placa de alma

tenga espesores distintos arriba y abajo del elemento de borde. En ese caso se debe cumplir que:

$$I_{b} \ge \frac{0.0031 \, h^{4}}{L} \left| t_{i} - t_{i-1} \right| \tag{7-4}$$

donde t_i - t_{i-1} representa la diferencia de espesores entre las placas de alma vinculadas al elemento.

Bruneau et al. (2010), indican que estos requerimientos no aseguran un comportamiento satisfactorio del muro debido a que se pueden producir deformaciones excesivas como resultado de la fluencia por corte de los elementos de borde horizontal. Las investigaciones en desarrollo permitirán comprobar la efectividad de estos requerimientos.

Todos los elementos de borde vertical, horizontal e intermedios deben cumplir con los requerimientos indicados para miembros de ductilidad elevada.

Finalmente, se requiere que la resistencia flexional de los elementos de borde vertical y horizontal cumpla con la relación definida por la Ecuación 3-7, de modo de asegurar un comportamiento de viga débil-columna fuerte. En la evaluación de dicha relación debe obviarse el efecto de la placa de alma.

7.5.3 Placa de alma

La resistencia nominal de la placa de alma para el estado de fluencia por corte debe determinarse con la Ecuación 7-1. Para este estado límite se considera un factor de resistencia ϕ =0.90.

7.5.4 Zonas protegidas

En el diseño de los muros de corte especiales con placas deben considerarse como zonas protegidas las siguientes:

- Las placas de alma.
- Los elementos de conexión entre las placas de alma y los elementos de borde horizontal y vertical.
- Las zonas de rótulas plásticas en los extremos de los elementos de borde horizontal y vertical.

7.5.5 Conexiones

La resistencia requerida para el diseño de las conexiones de la placa de alma a los elementos de borde debe determinarse considerando que la placa desarrolla su resistencia esperada en tracción.

Las conexiones entre los elementos de borde vertical y horizontal deben cumplir todas las condiciones exigidas para las conexiones a momento totalmente restringidas de los pórticos no arriostrados ordinarios. Adicionalmente, la resistencia requerida de estas conexiones debe determinarse a partir del diseño por capacidad, para lo cual se requiere que el efecto de la acción sísmica incluyendo sobrerresistencia, E_{mh} , se determine considerando que se rotulan los elementos de borde horizontales y que la placa de alma fluye con un ángulo α definido por la Ecuación 7-2.

La zona panel de los elementos de borde verticales debe cumplir con los requisitos de los pórticos no arriostrados especiales.

Se requiere que las siguientes soldaduras se consideren como soldaduras de demanda crítica:

- Soldaduras de ranura en empalmes de columnas.
- Soldaduras en las conexiones base-columna.
- Soldaduras en las conexiones entre elementos de borde vertical y horizontal.

7.5.6 Placas de acero perforadas

En el caso de que el muro de corte incluya placas con perforaciones circulares, éstas deben disponerse según un patrón regular, con diámetro y separación uniforme. Las perforaciones deben distribuirse sobre toda el área de la placa, formando alineaciones diagonales con un ángulo constante, como se indica en la Figura 7-4.

Los bordes de las perforaciones deben tener una rugosidad superficial no mayor de 13 µm.

La resistencia de la placa de alma con perforaciones circulares se determina con la siguiente expresión:

$$V_n = 0.42 F_y t_w L_{cf} \left(1 - \frac{0.7D}{S_{diag}} \right)$$
 (7-5)

donde D es el diámetro de las perforaciones y S_{diag} es la distancia más corta entre centros de perforaciones. La distancia S_{diag} debe ser como mínimo igual a 1.67D y la distancia entre las primeras perforaciones y los bordes de la placa deber ser como mínimo D y no exceder D+0.7 S_{diag} .

La rigidez de la placa de alma con perforaciones circulares puede determinarse a partir de un espesor efectivo, t_{eff} (menor que el real):

$$t_{\rm eff} = \frac{1 - \frac{\pi}{4} \left(\frac{D}{S_{\rm diag}}\right)}{1 - \frac{\pi}{4} \left(\frac{D}{S_{\rm diag}}\right) \left(1 - \frac{N_{\rm r} D \sin \alpha}{H_{\rm c}}\right)} t_w \quad (7-6)$$

donde H_c es la altura libre de la columna entre alas de las vigas, N_r es el número de filas horizontales de perforaciones y α es el ángulo de la línea más corta entre centros de perforaciones con la vertical. La tensión efectiva esperada que debe considerarse para determinar la sobrerresistencia estructural, E_{mh} (ver Sección 7.5.1), es $R_y F_y$ (1-0.7 D / S_{diag}).

7.5.7 Placas de acero con perforaciones de esquina

Las especificaciones sísmicas permiten el uso de placas de acero con perforaciones de esquina (un cuarto de círculo), según se indica en la Figura 7-6. En este caso se debe disponer de una planchuela de refuerzo soldada al borde de la perforación (*arching plate*), la cual se diseña para resistir una fuerza de tracción. Los detalles sobre el diseño de este tipo particular de muros pueden encontrarse en la Sección F5.7b de ANSI/AISC 341-10.

7.6 APLICACIÓN A LA REHABILITACIÓN ESTRUCTURAL

Los muros de corte con placas de acero representan una alternativa ventajosa para la rehabilitación sísmica de edificios. La incorporación de placas de alma a pórticos existentes de acero u hormigón permite incrementar la rigidez y resistencia de la estructura. El efecto en el comportamiento estructural, en términos globales, es similar al que produce la incorporación de riostras, con la diferencia que la placa se conecta a lo largo de todo su perímetro y no transfiere cargas concentradas en los nudos del pórtico. El proceso constructivo se puede realizar "en seco", con rapidez y produciendo interferencia mínimas, en comparación con el uso de refuerzos de hormigón armado.

La incorporación de las placas de alma modifica el comportamiento estructural y el estado de solicitaciones en los miembros del pórtico. Es por ello que el diseñador debe evaluar cuidadosamente las consecuencias.

Un aspecto importante a considerar es la conexión de la placa de alma. En el caso de rehabilitación de pórticos de acero, se puede utilizar un detalle similar a los indicados en la Figuras 7-17 y 7-18. Si la placa se conecta a una estructura existente de hormigón armado se deben usar pernos de anclaje o elementos similares que permitan la vinculación con ese material. En la Figura 7-21 se presenta una propuesta de detalle para resolver la conexión. Sin embargo, es importante aclarar que no se dispone de resultados experimentales (de acuerdo al conocimiento del autor) que validen conexiones de este tipo.

Fig. 7-21. Detalle de conexión de la placa de alma a miembros de hormigón armado.

Capítulo 8 Estructuras con secciones compuestas

8.1 INTRODUCCIÓN

En este capítulo se presentan, en forma general, los requerimientos de diseño del reglamento ANSI/AISC 341-10 para estructuras con miembros compuestas. Dicho reglamento agrupa a las distintas estructuras en (i) pórticos compuestos no arriostrados, (ii) pórticos compuestos arriostrados, y (iii) muros compuestos.

El análisis estructural de las construcciones compuestas se realiza usando criterios similares a los empleados en construcciones de acero y hormigón armado. Sin embargo, es importante destacar que las primeras presentan algunos aspectos distintivos, que en ciertos casos deben considerarse en el análisis (especialmente cuando se estudia el comportamiento inelástico de la estructura). El lector interesado en este tema puede consultar la publicación de Spacone, E. y El-Tawil (2004).

8.2 PÓRTICOS COMPUESTOS NO ARRIOS-TRADOS

8.2.1 Tipos de pórticos

Los pórticos compuestos no arriostrados o pórticos a momento, según el reglamento ANSI/AISC 341-10, pueden diseñarse según cuatro tipos o categorías. En la Tabla 8-1 se resumen las principales características de cada uno de ellos, en cuanto al tipo de columnas, vigas y conexiones que pueden usarse en cada caso. Es importante observar que cada pórtico puede diseñarse con ciertos tipos de miembros. En las secciones subsiguientes se describen las pautas reglamentarias de diseño.

8.2.2 Pórticos compuestos ordinarios

Estos pórticos se diseñan a los efectos de desarrollar una mínima capacidad de disipación de energía, por lo cual las normas norteamericanas permiten su uso solo para las categorías de diseño sísmico más bajas (recordar que la categoría de diseño sísmico es una categoría asignadas a cada estructura según su riesgo y la severidad del movimiento sísmico correspondiente al sitio de construcción).

La reglamentación no exige requerimientos particulares para este tipo de pórticos, en lo que se refiere al análisis, sistema estructural o zonas protegidas, si bien se exige que las conexiones sean totalmente restringidas y cumplan con los criterios generales para conexiones compuestas, descriptos en la Sección 2.8.6 de este texto. La diferencia entre los pórticos ordinarios, intermedios y especiales radica en su capacidad de disipación de energía, según se explicó en el Capítulo 2. Estos se diseñan con valores diferentes del factor de modificación de respuesta R, y por ende, el nivel de detalles y verificaciones a realizar también varía en cada caso.

Tabla 8-1. Tipos de pórticos no arriostrados, según ANSI/AISC 341-10.

Тіро	Columnas	Vigas	Conexiones
Pórticos compuestos ordinarios C-OMF	Compuestas. Hormigón armado.	Acero es- tructural. Embebida en hormigón. Compuesta.	Totalmente restringidas (FR)
Pórticos compuestos intermedios C-IMF	Compuestas. Hormigón armado.	Acero es- tructural. Embebida en hormigón. Compuesta.	Totalmente restringidas (FR)
Pórticos compuestos especiales C-SMF	Compuestas. Hormigón armado.	Acero es- tructural. Embebida en hormigón. Compuesta.	Totalmente restringidas (FR)
Pórticos compuestos parcialmente restringidos C-PRMF	Acero es- tructural.	Compuesta.	Parcialmente restringidas (PR)

Cuando se usan miembros de hormigón armado, por ejemplo para las columnas, los mismos deben diseñarse de acuerdo con el reglamento ACI 318, sin considerar los requerimientos del Capítulo 21 (aplicable a estructuras sismorresistentes de hormigón armado).

8.2.3 Pórticos compuestos intermedios

Los pórticos compuestos intermedios se diseñan con el objetivo de disponer de una limitada capacidad de deformación inelástica. Es por ello que se incluyen requerimientos adicionales (en comparación con los pórticos ordinarios) para asegurar la fluencia por flexión en las vigas y columnas, y la fluencia por corte en las zonas panel de las columnas.

Las vigas, ya sean de acero estructural o compuestas, deben satisfacer los requerimientos para miembros de ductilidad limitada y deben arriostrarse lateralmente, especialmente donde se introducen cargas concentradas, en cambios de sección y en los lugares donde se espera la formación de rótulas plásticas. Las zonas de los extremos de las vigas, donde se pueden producir deformaciones inelásticas, deben considerarse como zonas protegidas.

Las conexiones deben ser totalmente restringidas y cumplir con los criterios generales para conexiones compuestas, descriptos en la Sección 2.8.6 de este texto. Adicionalmente se requiere que:

- La conexión debe ser capaz de acomodar un ángulo de distorsión de piso de 0.02 rad, como mínimo.
- La resistencia flexional de la conexión, determinada en la cara de la columna, debe ser igual o mayor que 0.8 M_p (donde M_p es el momento nominal de la viga).
- La resistencia requerida a corte de la conexión se debe determinar a partir de las combinaciones de carga que incluyan las cargas sísmicas amplificadas (es decir, con efecto de sobrerresistencia). En esta determinación, el el efecto de la acción sísmica amplificada se calcula como:

$$E_{mh} = 2 (1.1 M_{p, exp}) / L_h$$
 (8-1)

donde $M_{p, exp}$ es la resistencia flexional esperada de la viga (la cual puede determinarse como $R_y M_p$) y L_h es la distancia entre rótulas plásticas de la viga.

• Las soldaduras de ranura, en caso de usarse en empalme de columnas, deben ser de penetración completa. Si se emplea otro tipo de soldadura debe asegurarse que la resistencia requerida en la conexión es por lo menos igual a la resistencia nominal de la menor de las columnas a empalmar. La resistencia nominal a corte del empalme debe ser como mínimo igual a:

$$E_{\rm mh} = \sum M_{\rm pcc} / H \tag{8-2}$$

donde $\sum M_{pcc}$ es la suma de los momentos nominales de las columnas por encima y por debajo del empalme y H es la altura del piso.

8.2.4 Pórticos compuestos especiales

Los pórticos compuestos especiales deben disponer de una significativa capacidad deformación inelástica, para lo cual se aplica el criterio de diseño de "columna fuerte-viga débil". De esta forma se busca la formación de rótulas plásticas en vigas y eventualmente en la base de las columnas. Desde el punto de vista reglamentario, esta condición se cumple mediante el requisito de que la capacidad flexional de las columnas sea mayor que la de las vigas:

$$\sum M_{pcc}^* / \sum M_{p, exp}^* > 1.0$$
 (8-3)

donde $\sum M^*_{pcc}$ es la suma de los momentos nominales arriba y debajo del nudo, considerando la reducción por carga axial, y $\sum M^*_{p, exp}$ es la suma de la resistencia flexional esperada en las rótulas plásticas de las vigas. La resistencia de las vigas puede estimarse como:

$$\sum M_{p, exp}^{*} = \sum (1.1 M_{p, exp} + M_{uv})$$
(8-4)

donde $M_{p,exp}$ es el momento de plastificación esperado y M_{uv} es el momento debido a la amplificación de corte desde la rótula plástica hasta el eje de la columna.

Las vigas deben satisfacer los requerimientos para miembros de alta ductilidad y deben arriostrarse lateralmente, especialmente donde se introducen cargas concentradas, en cambios de sección y en los lugares donde se espera la formación de rótulas plásticas. Las zonas de los extremos de las vigas, donde se pueden producir deformaciones inelásticas, deben considerarse como zonas protegidas.

Las columnas compuestas con conexiones no arriostradas deben contar con elementos que restrinjan lateralmente ambas alas de la columna. Estos elementos deben diseñarse para resistir una fuerza igual al 2% de la resistencia del ala de la viga, esto es 0.02 F_{y} b_f t_{bf}.

Los miembros compuestos de pórticos especiales deben cumplir con las condiciones requeridas para miembros de alta ductilidad. Además, para el caso de vigas compuestas embebidas en hormigón se requiere que la distancia desde la fibra de hormigón más comprimido hasta el eje neutro, Y_{PNA} , cumpla la siguiente condición:

$$Y_{PNA} \le \frac{Y_{con} + d}{1 + \frac{1700F_y}{E}}$$
 (8-5)

donde Y_{con} es la distancia desde la parte superior de la viga de acero a la parte superior del hormigón, d es la altura total de la viga compuesta, E es el módulo de elasticidad del acero y F_y la tensión de fluencia. Esta condición asegura que la deformación en la fibra extrema del acero será al menos 5 veces la deformación de fluencia antes de que el hormigón desarrolle una deformación máxima en compresión de 0.003.

Las conexiones de los pórticos especiales deben ser totalmente restringidas. Cuando se usan juntas soldadas, las mismas deben considerarse como soldaduras de demanda crítica en los siguientes casos:

- Soldaduras de ranura en empalmes de columnas.
- Soldaduras en las bases de las columnas.
- Soldaduras de ranura con penetración completa en conexiones de ala y alma de vigas a columnas, placas de continuidad y placas de corte.

La conexión debe ser capaz de acomodar un ángulo de distorsión de piso de 0.04 rad, como mínimo, y la resistencia flexional de la conexión, determinada en la cara de la columna, debe ser igual o mayor que 0.8 M_p para ese nivel de distorsión de piso. El cumplimiento de estos requerimientos debe demostrarse mediante criterios similares a los definidos para la calificación de conexiones en estructuras de acero. También deben cumplirse los requerimientos expresados por las Ecuaciones 8-1 y 8-2, para pórticos intermedios, con relación a la resistencia a corte de las conexiones y empalmes de columnas.

8.2.5 Conexiones para pórticos compuestos

El reglamento ANSI/AISC 341-10, en sus comentarios, describe algunas conexiones típicas que pueden usarse en los pórticos compuestos especiales. La Figura 8-1 muestra una conexión entre una viga de acero y una columna compuesta formada por un perfil I embebido en hormigón armado. En este caso la viga se interrumpe en el nudo y se suelda con cordones de penetración completa a las alas del perfil de la columna. Es importante destacar que se incluyen las placas de apoyo lateral soldadas entre las alas de la viga. Debe notarse que en este detalle se requiere la realización de soldadura en obra, para conectar la viga con el perfil I.

Fig. 8-1. Detalle de la conexión una viga de acero y una columna compuesta embebida.

La Figura 8-2 presenta otro ejemplo, correspondiente al caso de una columna compuesta formada por un tubo de acero, de sección cuadrada, relleno de hormigón. La viga se conecta a las dos caras laterales del tubo mediante soldadura de contorno con penetración completa. Los resultados experimentales confirman que esta conexión es capaz resistir distorsiones de piso mayores a 0.04, como se requiere para el caso de pórticos compuestos especiales.

Ricles et al. (2004) desarrollaron un programa experimental para estudiar el comportamiento de varias conexiones para pórticos con columnas compuestas rellenas y vigas de acero estructural. La Figura 8-3 muestra una de las alternativas que fueron ensayadas, demostrándose así su adecuado comportamiento estructural. En esta conexión la viga se interrumpe en la zona del nudo y se conecta a la columna, formada por un tubo cuadrado relleno de hormigón, mediante 4 piezas en forma de T (obtenidas por corte de un perfil W). Las piezas en T se sueldan a los extremos de la viga en taller y se conectan a la columna mediante pernos pasantes que permiten transferir el momento flector y la fuerza de corte actuante en el extremo de la viga. Según los autores que desarrollaron la conexión, se logra así activar una biela de compresión en el hormigón confinado de la zona del nudo. En el ejemplo de la figura se usaron 12 pernos, para cuya colocación en obra se dejaron tubos de PVC insertos en la columna previamente al hormigonado de la misma.

Fig. 8-2. Conexión de una viga de acero con una columna compuesta rellena.

Fig. 8-3. Conexión de una viga de acero con una columna compuesta rellena, con interrupción de la continuidad de la viga.

En el caso de conexiones con columnas de hormigón armado, es usual que la viga de acero atraviese en forma continua el nudo, con lo cual se simplifica la construcción y se evita el uso de soldadura en obra. La Figura 2-49 muestra un ejemplo de este tipo de conexiones. Alternativamente, puede usarse una banda de acero que rodea completamente la columna en la zona del nudo, como se ilustra en la Figura 8-4. Este detalle presenta la ventaja de proporcionar confinamiento al hormigón en la zona del nudo y de mejorar la capacidad de la conexión de movilizar la resistencia a corte del hormigón. La colocación de cuatro rigidizadores soldados a las alas de la viga y a la banda de acero, mejora la capacidad de transferir momento entre la viga y la columna. Con esta conexión se logra una solución estructural muy conveniente, si bien presenta una mayor complejidad desde el punto de vista constructivo por la fabricación y montaje de la banda de acero que rodea el nudo y los rigidizadores.

Fig. 8-4. Conexión viga de acero-columna de hormigón armado con banda de acero que rodea completamente al nudo.

8.2.6 Pórticos compuestos parcialmente restringidos

Estos pórticos están formados por columnas de acero y vigas compuestas, que se vinculan entre sí mediante conexiones parcialmente restringidas. La resistencia flexional en el nudo del pórtico se desarrolla mediante una cupla formada por la fuerza axial que resiste el ala inferior de la viga (conectada por una junta soldada o apernada a la columna) y la fuerza generada en el refuerzo de la losa de hormigón armado, ver Figura 8-5.

Los pórticos compuestos parcialmente restringidos se diseñan de modo de contar con una significativa capacidad de deformación inelástica, la cual se desarrolla por fluencia de los componentes dúctiles de la conexión. Se permite la fluencia limitada del acero en otras zonas, tales como las bases de las columnas.

La flexibilidad de la conexión, por ser parcialmente restringida, es un aspecto importante que influyen en el comportamiento estructural. Es por ello que debe ser considerada en el modelo de análisis a los efectos de calcular las propiedades dinámicas, la resistencia requerida y los desplazamientos de estos pórticos. La rigidez de la viga puede calcularse mediante el momento de inercia efectivo.

Fig. 8-5. Conexión parcialmente restringida entre una columna de acero estructural y una viga compuesta.

Los pórticos compuestos parcialmente restringidos incialmente se usaron en zonas de moderada actividad sísmica (en el Este de Estados Unidos), y luego su aplicación se difundió a zonas de alta sismicidad. Los resultados analíticos y experimentales han mostrado que el efecto de la acción sísmicas pueden ser menor en estos pórticos compuestos que en los pórticos totalmente restringidos. Ello se debe al incremento del periodo de vibración de la estructura, como resultado de la fluencia en la conexión, y a un comportamiento histerético estable.

Las columnas y vigas del pórtico deben cumplir con los requerimientos para miembros de alta ductilidad. Adicionalmente, se requiere que las vigas no sean embebidas y que se diseñen como totalmente compuestas. Se debe disponer una losa maciza en una zona de 0.15m alrededor de la columna de acero en la dirección de transferencia de momento, como se ilustra en la Figura 8-6. De esta forma se busca mejorar la capacidad para transferir fuerzas por aplastamiento del hormigón sobre las caras de la columna. Este requerimiento podría evitarse si se utiliza otro dispositivo para asegurar la transferencia de fuerzas, por ejemplo, conectando parte del refuerzo longitudinal de la losa directamente a la columna.

De acuerdo con el reglamento ANSI/AISC 341-10, deben considerarse como soldaduras de demanda crítica las soldaduras de ranura en empalmes de columnas y las soldaduras en las bases de las columnas. Además, se requiere el cumplimiento de las siguientes condiciones:

- La conexión debe ser capaz de acomodar un ángulo de distorsión de piso de 0.02 rad, como mínimo.
- La resistencia flexional de la conexión, determinada en la cara de la columna, debe ser igual o mayor que 0.5 M_p (donde M_p es el momento nominal de la viga).

Fig. 8-6. Condición de losa maciza alrededor de la columna de acero (por simplicidad no se muestran los componentes de la conexión viga-columna).

8.3 PÓRTICOS COMPUESTOS ARRIOSTRA-DOS

8.3.1 Tipos de pórticos

Los pórticos compuestos arriostrados pueden diseñarse según tres tipos distintos. En la Tabla 8-2 se indican los tipos de pórticos considerados por el reglamento AN-SI/AISC 341-10 y los miembros estructurales que pueden utilizarse en cada caso para columnas, vigas y riostras.

Los aspectos generales descriptos en el Capítulo 4 para pórticos arriostrados de acero, en lo que respecta al comportamiento de riostras, disposición de las mismas, ventajas estructurales, etc., son aplicables también a los pórticos compuestos arriostrados.

8.3.2 Pórticos compuestos ordinarios arriostrados

Los pórticos compuestos ordinarios arriostrados se diseñan para desarrollar ductilidad limitada, en forma análoga a los pórticos ordinarios arriostrados concéntricamente con miembros de acero estructural. Es por ello que los requisitos reglamentarios para estos últimos (descriptos en la Sección 4.6), se aplican también para los primeros. Sin embargo, debe destacarse que los pórticos compuestos ordinarios arriostrados solo pueden usarse para ciertas categorías sísmicas, mientras que los de acero puede emplearse en caso de categorías sísmicas más altas.

Si bien las conexiones en estos pórticos son concéntricas, se admiten pequeñas excentricidades, cuya dimensión sea menor de la altura de la viga. El momento resultante de esta excentricidad, en caso de existir, debe considerarse en el diseño de los miembros.

Tabla 8-2. Tipos de pórticos arriostrados, según ANSI/AISC 341-10.

Тіро	Columnas	Vigas	Riostras
Pórticos com-	Acero	Acero	Acero
puestos ordina-	estructural.	estructural.	estructural.
rios arriostrados	Compues-	Embebida	Compues-
concéntricamen-	tas (embe-	en hormi-	tas (relle-
te	bidas o	gón.	nas).
C-OBF	rellenas).	Compues-	
	Hormigón	ta.	
	armado.		
Pórticos com-	Compues-	Acero	Acero
puestos especia-	tas (embe-	estructural.	estructural.
les arriostrados	bidas o	Compues-	Compues-
concéntricamen-	rellenas).	ta.	tas (relle-
te			nas).
C-SCBF			
Pórticos com-	Compues-	Acero	Acero
puestos arrios-	tas (embe-	estructural.	estructural.
trados excéntri-	bidas o	Compues-	Compues-
camente (*)	rellenas).	ta.	tas (relle-
C-EBF			nas).

(*) Los enlaces deben ser miembros de acero estructural.

8.3.3 Pórticos compuestos especiales arriostrados concéntricamente

Los pórticos compuestos especiales arriostrados deben contar con conexiones concéntricas, si bien se admiten excentricidades cuya dimensión sea menor de la altura de la viga. El efecto del momento resultante de la excentricidad debe considerarse en el diseño (al igual que en el caso de los pórticos ordinarios).

Estos pórticos se diseñan de modo de disponer de una elevada capacidad de deformación inelástica, principalmente a través de la fluencia de las riostras en tracción y del pandeo de las riostras comprimidas. Los valores del factor de modificación de respuesta R y del factor de amplificación de desplazamientos C_d son similares a los correspondientes a los pórticos especiales arriostrados de acero estructural.

Los miembros estructurales deben cumplir con los requerimientos para miembros de alta ductilidad y las

riostras, en particular, deben verificar las condiciones exigidas para las riostras de pórticos especiales de acero (ver Capitulo 4), si bien en este caso no se consideran zonas protegidas. Las riostras pueden ser miembros de acero estructural o miembros compuestos rellenos. Los resultados experimentales indican que los tubos rellenos de acero contribuyen eficientemente para rigidizar las paredes del tubo y disminuir o evitar el efecto del pandeo local de las mismas.

Las conexiones de estos pórticos deben diseñarse considerando que es necesario evitar fallas prematuras antes de que se desarrolle completamente la resistencia de las riostras, tanto en compresión como en tracción. Se requiere que las conexiones verifiquen algunos de los dos criterios siguientes:

- La conexión es simple y debe contar con una capacidad de rotación de 0.025 rad, como mínimo, o
- La conexión es totalmente restringidas y debe cumplir con los requerimientos de resistencia de corte indicados para pórticos compuestos intermedios (no arriostrados, ver Ecuación 8.1). Además, la resistencia flexional requerida debe determinarse mediante análisis, en combinación con la resistencia requerida de las conexiones de la riostra y de la viga.

Estos dos criterios implican que la conexión o bien se diseña para acomodar la rotación del extremo de la riostra o, caso contrario, debe tener la rigidez y resistencia necesarias para soportar las solicitaciones que se originan cuando se forman rótulas plástica en los extremos de la riostra.

8.3.4 Conexiones para pórticos compuestos arriostrados

Como se mencionó previamente, las conexiones compuestas presenta una amplia gama de alternativas, dependiendo de las características de los miembros estructurales que se vinculan (los cuales pueden ser de acero estructural, compuestos o de hormigón armado). Se presentan en esta sección algunos ejemplos usuales, tomados de los comentarios del reglamento AN-SI/AISC 341-10.

La Figura 8-7 muestra, a modo de ejemplo, la conexión de un pórtico compuesto arriostrado, en el cual la columna está formada por perfil de acero embebido en hormigón armado (obsérvese el refuerzo longitudinal y transversal en la columna y la presencia de conectores corte que vinculan el perfil con el hormigón).La viga es un perfil I de acero estructural y las riostras están formadas por dos angulares dispuestos en forma de "T". La viga se suelda con juntas de penetración completa al ala de la columna y se usan dos chapas de nudo (soldadas a la viga y a la columna) para conectar las riostras.

Fig. 8-7. Conexión compuesta para las riostras y viga de un pórtico arriostrado.

La Figura 8-8 muestra la conexión de una columna compuesta rellena con dos riostras, formadas por perfiles H, y una viga de acero estructural. La conexión de los miembros estructurales se realiza mediante dos chapas de acero que atraviesan el tubo, de sección cuadrada, y se sueldan en las dos caras opuestas. Estas chapas permiten conectar las riostras mediante juntas apernadas, mientras que la viga se conecta con el exterior del tubo a través de otras dos chapas.

Las conexiones que se ilustran en las figuras previas representan dos ejemplos que pueden servir de guía. Sin embargo, en cada caso, el ingeniero estructural deberá adoptar las conexiones que resulten convenientes desde el punto de vista estructural, constructivo y económico, respetando siempre los requerimientos reglamentarios vigentes.

Fig. 8-8. Detalle de una conexión de riostras y viga a una columna compuesta rellena.

8.3.5 Pórticos compuestos arriostrados excéntricamente

Los pórticos compuestos con arriostramientos excéntricos se caracterizan porque un extremo de cada riostra interseca a la viga en forma excéntrica, generando así un enlace (*link*) de longitud e donde se desarrollan elevadas fuerzas de corte y momentos flectores. El enlace debe ser un miembro de acero estructural. Los aspectos generales del comportamiento estructural coinciden con los descriptos en el Capítulo 5 para pórticos arriostrados excéntricamente de acero y, por lo tanto no se repite su presentación para el caso de construcciones compuestas.

Estos pórticos se diseñan para disponer de una elevada capacidad de deformación inelástica, como resultado de la fluencia por corte y flexión en la zona del enlace. Los requerimientos reglamentarios, relacionados con el análisis estructural, diseño de miembros y conexiones, son análogos a los correspondientes a pórticos arriostrados excéntricamente de acero. Adicionalmente, en las conexiones en que una riostra se vincula a ambos miembros del nudo viga-columna, se requiere que las conexiones verifiquen algunos de los dos criterios siguientes:

- La conexión es simple y debe contar con una capacidad de rotación de 0.025 rad, como mínimo, o
- La conexión es totalmente restringidas y debe cumplir con los requerimientos de resistencia de corte indicados para pórticos compuestos intermedios (no arriostrados, ver Ecuación 8.1). Además, la resistencia flexional requerida debe determinarse mediante análisis, en combinación con la resistencia requerida de las conexiones de la riostra y de la viga.

Las conexiones en la zona del enlace representan un aspecto particular de este tipo de pórticos. Como se mencionó para otras estructuras compuestas, se presentan diversas alternativas, dependiendo del tipo de miembros (acero estructural o miembros compuestos) que se conectan. La Figura 8-9 muestra un ejemplo de conexión para el caso de que la columna sea un miembro compuesto embebido y que el enlace se ubique en un extremo de la viga. En este ejemplo, la viga es continua a través del nudo, y el perfil de acero embebido de la columna se suelda a las alas de la viga. Se dispone en las caras del nudo placas laterales (con la función estructural y constructiva descripta previamente para otras conexiones).

Fig. 8-9. Ejemplo de conexión del enlace de un pórtico compuesto arriostrado excéntricamente.

8.4 MUROS DE CORTE COMPUESTOS

8.4.1 Tipos de muros

La construcción compuesta, para el caso de muros, permite distintas alternativas según la forma en que se combine hormigón, placas de acero y elementos de acero estructural embebidos. Los muros compuestos se pueden clasificar en dos grupos principales. El primero comprende los muros de corte de hormigón armado que incorporan elementos de acero estructural embebidos, usualmente en los bordes del muro, para formar así un miembro compuesto. Este tipo de muros se denominan muros de corte compuestos y se pueden diseñar, como ocurre con otras estructuras de acero y compuestas, considerando dos categorías: ordinarios y especiales. La Figura 8-10 muestra dos ejemplos de este tipo de muros, en los cuales se incorporan perfiles de acero; en un caso la sección transversal del muro es rectangular y en el otro se incluyen ensanchamientos en los bordes, con lo cual se puede aumentar la rigidez y resistencia del muro.

Fig. 8-10. Muros de hormigón armado con elemento compuestos en los bordes (a) muro de sección rectangular, y (b) muro con ensanchamiento de bordes.

El segundo grupo incluye los muros con placas de acero embebidas en hormigón armado o muros con placas de acero rellenos de hormigón, los cuales incorporan elementos de borde compuestos o de acero estructural. La Figura 8-11 grafica dos casos de muros con placas de acero embebidas. En un caso, el muro tiene elementos de borde formados por un perfil de acero estructural, mientras que en el otro se usa un perfil embebido como elemento de borde. Es importante destacar el uso de conectores de corte para asegurar el desarrollo de la acción compuesta entre la placa de acero y el hormigón armado en el cual se encuentra embebida.

Otra alternativa dentro del grupo de muros compuestos con placas de acero es utilizar dos o más placas para formar secciones compuestas rellenas. En la Figura 8-12 (a) se representa el caso de un muro de sección rectangular con placas de acero y relleno de hormigón con refuerzo en forma de malla de acero. La 8-12 (b) muestra otro ejemplo, representado por una sección compuesta rellena con hormigón armado, en la cual los elementos de borde son de hormigón armado, en lugar de placas de acero como en el caso anterior.

Fig. 8-11. Ejemplos de muros de corte con placas de acero rigidizados con hormigón (a) con miembro de borde de acero, y (b) con miembros compuestos embebidos en los bordes.

Fig. 8-12.Ejemplos de secciones típicas de (a) muro de corte relleno de hormigón y (b) muro relleno con elementos de borde de hormigón armado.

La información experimental disponible actualmente sobre el comportamiento de muros compuestos con placas de acero es limitada y se vincula, principalmente, con los tipos de secciones ilustrados en las Figuras 8-11 y 8-12. Su aplicación resulta más efectiva en los casos de muros sometidos a fuerzas de corte elevadas, en donde el uso de muros tradicionales de hormigón armado requeriría espesores muy grandes. El desarrollo de la acción compuesta permite en este caso disminuir el espesor del muro, por el aporte de la o las placas de acero, mientras que el hormigón ayuda a controlar los efectos del pandeo de las placas. Este tipo de muros, por sus características, se ha utilizado principalmente para estructuras nucleares.

Desde el punto de vista reglamentario (ver AN-SI/AISC 341-10) se consideran tres clases de muros compuestos, según se resumen en la Tabla 8.3.

Tabla 8-3. Tipos de muros compuestos, según AN-SI/AISC 341-10.

Tipo	Muro	Elementos	Vigas de
		de borde	acople
Muros de corte	Hormigón	Acero es-	Acero es-
compuestos	armado con	tructural.	tructural.
ordinarios	elementos	Sección	Compuestas
C-OSW	de acero	compuesta.	
	estructural	-	
Muros de	Hormigón	Acero es-	Acero es-
corte com-	armado con	tructural.	tructural.
puestos espe-	elementos	Sección	Compuestas
ciales	de acero	compuesta.	
C-SSW	estructural		
Muros com-	Placas de	Acero es-	
puestos con	acero em-	tructural.	(*)
placas de	bebidas	Sección	
acero	Placas con	compuesta.	
C-PSW	relleno de		
	hormigón		

(*) En este caso, el reglamento no incluye ninguna referencia o requerimiento para las vigas de acoplamiento.

8.4.2 Muros de corte compuestos ordinarios

Los muros de corte compuestos ordinarios son estructuras que se diseñan para disponer de una capacidad limitada de deformación inelástica a través de la fluencia en el muro y de los elementos compuestos y de acero. En el caso particular de muros compuestos acoplados se permite la fluencia en las vigas de acople en todos los niveles de la construcción. Estas vigas se comportan en forma análoga a los enlaces de los pórticos arriostrados excéntricamente.

Los muros de hormigón armado deben diseñarse de acuerdo con los requisitos del reglamento ACI 318, sin considerar el Capítulo 21 del mismo (aplicable a estructuras sismorresistentes).

El análisis estructural debe realizarse considerando algunos aspectos distintivos de estas estructuras, tales como:

- La rigidez de muros y vigas de acople compuestas debe definirse a partir de la sección efectiva sin fisurar (ver ACI 318, Capítulo 10).
- Los elementos de borde formados por perfiles de acero embebidos en hormigón deben representarse mediante una sección transformada de hormigón con propiedades elásticas.
- La flexibilidad de las conexiones muro-viga de acople, como así también el efecto de las distorsiones de corte debe incluirse en el análisis.

En el caso de muros compuestos acoplados se permite una redistribución de fuerzas en las vigas de acople, hacia los pisos adyacentes. Sin embargo, el corte en una viga individual no debe reducirse en más del 20% y la suma las fuerzas de corte en todas las vigas de acople debe ser mayor o igual que la suma de las fuerzas calculadas elásticamente.

La resistencia axial requerida de los elementos de borde puede determinarse bajo la consideración de que la fuerza de corte es resistida por el muro de hormigón armado mientras que las cargas gravitatorias y el momento de vuelco son resistidos por los elementos de borde. Es importante mencionar que, este criterio simplificado que define el reglamento ANSI/AISC 341-10, no es adecuado para determinar la resistencia flexional del muro, dado que desprecia el aporte del hormigón armado. De modo que la capacidad real del muro es mayor que la determinada con este criterio.

Cuando se emplean muros compuestos acoplados, el diseño de la viga de acople es una aspecto de significativa importancia para asegurar un adecuado comportamiento estructural. El reglamento ANSI/AISC 341-10 distingue dos casos: vigas de acople de acero o compuestas.

a. Vigas de acople de acero:

Las vigas deben cumplir con los requerimientos de miembros de ductilidad moderada. La resistencia a corte esperada, V_n , debe determinarse con la siguiente expresión:

$$\mathbf{V}_{\mathrm{n}} = \frac{2 \,\mathbf{R}_{\mathrm{y}} \,\mathbf{M}_{\mathrm{p}}}{g} \le \mathbf{R}_{\mathrm{y}} \,\mathbf{V}_{\mathrm{p}} \tag{8-6}$$

donde g es la longitud libre de la viga de acople y $V_p = 0.6 F_y A_{tw}$ (resistencia a corte nominal de la viga).

b. Vigas de acople compuestas:

La viga debe tener una conexión con el muro que asegure el desarrollo de la resistencia a corte esperada, la cual se determina como:

$$\mathbf{V}_{\mathrm{n}} = \frac{2\,\mathbf{M}_{\mathrm{p,exp}}}{g} \le \mathbf{V}_{\mathrm{comp}} \tag{8-7}$$

donde $M_{p,exp}$ es el momento flector esperado de la viga compuesta, el cual se determina con el método de las tensiones plásticas o de compatibilidad de deformaciones y debe incluir un valor adecuado del factor R_y . La resistencia a corte esperada de la viga compuesta, V_{comp} , se calcula como (unidades sistema internacional):

$$V_{n} = R_{y}V_{p} + \left(0.166\sqrt{f_{c}}b_{wc}d_{c} + \frac{A_{s}F_{ysr}d_{c}}{s}\right)$$
 (8-8)

donde A_s es el área del refuerzo transversal (en mm²), con tensión mínima de fluencia igual a F_{ysr} (en MPa), b_{wc} y d_c son el ancho y la altura, respectivamente, de la sección compuesta de hormigón (en mm), s es la separación del refuerzo transversal (en mm) y f'_c es la resistencia a compresión del hormigón.

El detalle de la conexión de la viga de acople con el muro depende de las características de ambos miembros. En el caso de que el muro incorpore en sus bordes elementos de acero, la viga se puede vincular a los mismos mediante una conexión a momento, como se indica en la Figura 8-13. La fuerza de corte actuante en la viga puede transferirse embebiendo el extremo de la misma una longitud adecuada para tal fin (como se ilustra en la figura) o también mediante una junta a corte en el alma de la viga.

Fig. 8-13. Viga de acople de acero conectada a un elemento de acero de borde con conexión de momento.

Fig. 8-14. Viga de acople de acero embebida en el muro.

Cuando el muro es de hormigón armado resulta necesario embeber los extremos de la viga de acero una longitud suficiente para asegurar que la misma puede desarrollar su capacidad resistente (esta longitud puede calcularse con el criterio indicado en la Sección H4.5b del ANSI/AISC 341-10). En la Figura 8-14 se muestra un ejemplo de una viga de acople embebida en el hormigón y con conectores de corte para asegurar la adecuada vinculación entre ambos materiales. En este caso la columna que se encuentra embebida en el muro cumple solo funciones constructivas, ya que se utiliza a los efectos del montaje de los miembros de acero, hasta que el hormigón del muro endurece y desarrolla su resistencia.

8.4.3 Muros de corte compuestos especiales

Los muros compuestos especiales son similares a los descriptos en la sección anterior, con la diferencia que se diseñan para desarrollar una significativa capacidad de deformación inelástica. Es por ello que los muros de hormigón armado deben diseñarse de acuerdo con los requisitos del reglamento ACI 318, incluido el Capítulo 21 para estructuras sismorresistentes. Los elementos de borde del muro, ya sean de acero o miembros compuestos, deben diseñarse para experimentar deformaciones inelásticas por efecto de las fuerzas axiales.

El análisis estructural debe considerar los siguientes aspectos:

- La rigidez de muros y vigas de acople compuestas debe definirse a partir de la sección efectiva fisurada (ver ACI 318, Capítulo 10).
- Los elementos de borde formados por perfiles de acero embebidos en hormigón deben representarse mediante una sección transformada de hormigón con propiedades elásticas.
- La flexibilidad de las conexiones muro-viga de acople, como así también el efecto de las distorsiones de corte, deben incluirse en el análisis estructural.

Los miembros de acero deben considerarse como miembros de alta ductilidad

En el caso de muros acoplados, las vigas de acople deben disipar energía por fluencia en flexión o corte, preferentemente en todos los niveles de la estructura; también se admite la formación de rótulas plásticas en la base de los muros. Las conexiones de las vigas de acople y los muros deben diseñarse considerando la resistencia requerida que se origina cuando la viga desarrolla su capacidad resistente, incluido los efectos de sobrerresistencia. Las vigas de acople deben considerarse como zonas protegidas, si bien se permite la realización de soldaduras para colocar rigidizadores.

Los requerimientos reglamentarios para las vigas de acople son similares a los descriptos para el caso de muros compuestos ordinarios, si bien se incluyen algunas condiciones adicionales para garantizar una adecuada ductilidad. En el caso particular de vigas de acople compuestas, la resistencia a corte esperada se calcula como (en lugar de la Ecuación 8-8):

$$V_{n} = 1.1 R_{y} V_{p} + 1.56 \left(0.166 \sqrt{f_{c}} b_{wc} d_{c} + \frac{A_{s} F_{ysr} d_{c}}{s} \right)$$
(8-9)

En esta ecuación se incluye el factor 1.1 para considerar el aumento de resistencia debido al endurecimiento por deformación.

8.4.4 Muros compuesto con placas de acero

Los muros de corte con placas de acero se diseñan para disponer de una significativa capacidad de deformación inelástica, a través de la fluencia de las placas de alma. Los elementos de borde del muro se diseñan para permanecer esencialmente en rango elástico, con excepción de la formación de rótulas plásticas en los elementos de borde horizontales. Es por ello que este tipo de estructuras son convenientes de usar en casos de muros sometidos a fuerzas de corte elevadas.

La presencia de aberturas, para puertas y ventas, puede afectar significativamente el comportamiento de los muros compuestos con placas de acero. Por esta razón, se requiere considerar las aberturas en el análisis estructural y evaluar cuidadosamente los requerimientos de resistencia a corte y flexión en los muros y vigas adyacentes a las aberturas.

El reglamento ANSI/AISC 341-10 presenta una serie de requerimientos para los muros compuestos que son iguales a los correspondientes a los muros especiales con placas de acero (ver Capítulo 7 de esta publicación). Adicionalmente, se agregan otros requisitos particulares que se discuten en esta sección.

El espesor de las placas de acero debe ser como máximo 9.5 mm (3/8"), mientras que el espesor del panel de hormigón deber ser como mínimo 100 mm, cuando el hormigón se coloca a ambos lados de la placa de acero, y de 200 mm cuando se coloca en un solo lado de la placa. Se deben disponer armaduras de

refuerzo (vertical y horizontal) con una cuantía mínima del 0.0025 y separación máxima de las barras de 450 mm.

La resistencia de diseño para el estado límite de fluencia por corte se determina como:

$$\phi V_{\rm n} = 0.6 \, A_{\rm sp} \, F_{\rm y} \tag{8-10}$$

donde A_{sp} es de la o las placas de acero que forma el muro compuesto. Es importante resaltar que la Ecuación 8-10 no considera la resistencia a corte del hormigón armado. Ello se debe al insuficiente conocimiento como para desarrollar una ecuación de diseño que combine ambas resistencias. Además, la resistencia de la placa, usualmente, es significativamente mayor que la del hormigón, por lo cual este criterio no presenta mayores inconvenientes desde el punto de vista práctico.

La conexión entre las placas de acero y los elementos de borde debe ser continua, en todos los bordes y realizarse con juntas soldadas o apernadas. Las juntas de conexión deben tener resistencia adecuada para asegurar el desarrollo de la resistencia nominal a corte de la placa de acero. La conexión entre la placa de acero y el panel de hormigón armado debe realizarse mediante conectores de acero que permitan controlar el pandeo de la placa. Estos conectores deben diseñarse para resistir las fuerzas de tracción, originadas por el pandeo inelástico de la placa, y el corte necesario para transferir la resistencia a corte de la placa o del panel de hormigón, según cual sea la menor.

Referencias Bibliográficas

- ACI 318 Committee (2011) Building Code Requirements for. Structural Concrete (ACI 318-11) and Commentary. Farmington Hills, ML.
- Aguirre, M. y Sanchez, A. R. (1992) "Structural Seismic Damper", *Journal of Structural Engineering*, ASCE, Vol. 118, No. 5, pp. 1158-1171
- AISC, (2006), *Seismic Design Manual*, American Institute of Steel Construction Inc., Chigaco, IL.
- AISC, (2010a), ANSI/AISC 341-10, Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction Inc., Chigaco, IL.
- AISC, (2010b), ANSI/AISC 360-10, *Specification for Structural Steel Buildings*, American Institute of Steel Construction Inc., Chigaco, IL.
- AISC (2010c), ANSI/AISC 358-10, Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, American Institute of Steel Construction Inc., Chigaco, IL.
- ASCE (2006), ASCE-SEI 41-06: Seismic Rehabilitation of Existing Buildings, American Society of Civil Engineers.
- ASCE (2010) ASCE/SEI 7-10. *Minimum Design Loads for Buildings and Other Structures*, American Society of Civil Engineers. Reston, VA.
- Basha, S. H. y Goel, S. C., (1994), Seismic Resistant Truss Moment Frame with Ductile Vierendeel Segment, Research Report UMCEE 94-29, University of Michigan.
- Bertero, V. V., Anderson, J. C. y Krawinkler, H. (1994), Performance of steel building structures during the Northridge earthquake, UCB/EERC-94/09, Earthquake Engineering Research Center, University of California, Berkeley.
- Bertero, R. y Bertero, V., (1999), "Redundacy in Earthquake-Resistant Design", *Journal of Structur*al Engineering of the American Society of Civil Engineers, Vol. 125, No. 1, pp. 81-88.
- Berman, J. W. y Bruneau, M. (2003), "Experimental Investigation of Light-Gauge Steel Plate Shear for the Seismic Retrofit of Buildings", *Technical Report No. MCEER-03-0001*, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, NY.
- Berman, J. W. y Bruneau, M. (2008), "Tubular Links for Eccentrically Braced Frames.II: Experimental Verification", *Journal of Structural Engineering*, *ASCE*, Vol. 134, No. 5, pp. 702-712.
- Black, R. G., Wenger, W. A. B. y Popov, E. P. (1980), Inelastic Buckling of Steel Struts Under Cyclic Load Reversals, Report No UCB-EERC-80/40, University of California, Berkeley, USA.
- Black, C., Makris, N. y Aiken, L. (2002), Component testing, stability analysis characterization of buck-

ling-restrained unbonded braces, Pacific Earthquake Engineering Research Center report PEER 2002/08.

- Bruneau, M., Uang, C. M. y Whittaker, A. (1998), Ductile Design of Steel Structurers, McGraw-Hill.
- Bruneau, M., Uang, C. M. y Sabelli, R. (2011), *Ductile Design of Steel Structurers*, McGraw-Hill, 2da Ed.
- Carreño, M. L., Cardona, O. D. y Barbat, A. H. (2005), "Seismic risk evaluation for an urban centre", Proccedings of the International Conference 250th Anniversary of the 1755 Lisbon Earthquake. Lisboa, Portugal.
- Chen, C. C., Lin, C. C. y Lin, C. H. (2006), "Ductile moment connections used in steel column-tree moment-resisting frames", *Journal of Constructional Steel Research*, 62, pp. 793-801.
- Chopra, A. (2012) Dynamics of Structures of Structures: Theory and Applications to Earthquake Engineer, 4ta Edición. Prentice Hall, Inc.
- Christopoulos, C. y Filiatrault, A, (2006) *Principles of Passive Supplemental Damping and Seismic Isolation*, IUSS Press, Italia.
- Clough, R. W. y Penzien, J. (2010) *Dynamics of Structures*, 2da Edición, Mc Graw Hill Inc.
- Cordova, P. P. y Hamburger, R. O. (2011) "Steel Connections: Propietary or Public Domain?", *Modern Steel Construction*. Octubre, http://www.modernsteel.com.
- Fahnestock, L. A., Ricles, J. M. y Sause, R. (2007) "Experimental Evaluation of a Large-Scale Buckling-Restrained Braced Frame", *Journal of Structural Engineering, ASCE*, Vol. 133, No. 9, pp 1205-1214.
- EERI (1994), *Slides on the January 17, 1994, Northridge Earthquake*, Earthquake Engineering Research Institute, Oakland, California.
- FEMA (2000a), FEMA-350. Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings. Federal Emergency Management Agency, Washington DC.
- FEMA (2000b), FEMA-351. Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings. Federal Emergency Management Agency, Washington DC.
- FEMA (2000c), FEMA-352. Recommended Postearthquake Evaluation and Repair Criteria for Welded Steel Moment-Frame Buildings, Federal Emergency Management Agency, Washington DC.
- FEMA (2000d), FEMA-353. Recommended Specifications and Quality Assurance Guidelines for Steel Moment-Frame Construction for Seismic Applications, Federal Emergency Management Agency, Washington DC.

- FEMA (2000e), FEMA-354. A Policy Guide to Steel Moment-frame Construction, Federal Emergency Management Agency, Washington DC.
- FEMA (2000f), FEMA-355D. *State of the Art Report on Connection Performance*, Federal Emergency Management Agency, Washington DC.
- FEMA (2000g), FEMA-355A. *State of the Art Report on Base Metals and Fracture*, Federal Emergency Management Agency, Washington DC.
- FEMA (2000h), FEMA-356. Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington DC.
- FEMA (2003), FEMA-450, NEHRP Recommended Provisions for Seismic Regulations For New Buildings and Other Structures, Federal Emergency Management Agency, Washington DC.
- FEMA (2006), FEMA-547, *Techniques for the Seismic Rehabilitation of Existing Buildings*, Federal Emergency Management Agency, Washington DC.
- FEMA (2009), FEMA P-420, Engineering Guideline for Incremental Seismic Rehabilitation, Federal Emergency Management Agency, Washington DC.
- Fu, X., Fell, B. V., Kanvinde, A. M. y Myers, A. T. (2007) "Experimental and Analytical Investigations of Net Section Fracture in Brace-Gusset Plate Connections", *Structures Congress: New Horizons and Better Practices*, ASCE.
- Fujimoto, M., Aoyagi, T., Ukai, K., Wada, A., y . Saito, K. (1972), "Structural Characteristics of Eccentric K-Braced Frames," *Trans. AIJ*, No. 195, pp. 39-49.
- Galambos, T. V. (1998), *Guide to Stability Design Criteria for Metal Structures*. 5ta Edición, John Willey & Sons.
- Goel, S. C., Rai, d. C. y Basha, S. H. (1998), Special *Truss Moment Frame. Design Guide*, Research Report UMCEE 98-44, University of Michigan.
- Griffis, L. G. (1992), Steel Design Guide 6. Load and Resistance Factor Design of W-Shapes Encased in Concrete., American Institute of Steel Construction Inc., Chigaco, IL.
- Gross, J. L., Engelhardt, M. D., Uang, C. M., Kasai, K. y Iwankiw, N. R. (1999) Steel Design Guide 12: Modification of Existing welded Steel Moment Frame Connections for Seismic Resistance, American Institute of Steel Construction Inc., Chigaco, IL.
- Hjelmstad , K. D. y Popov, E. P. (1984) "Characteristics of Eccentrically Braced Frame", *Journal of Structural Engineering, ASCE*, Vol. 110, pp. 340-353.
- Huber, G. (2001) "Semi-Continuous Beam-to-Column Joints at the Millennium Tower in Vienna, Austria", *Steel & Composite Structures*, Vol. 1, No.2, pp 159-170.

- INPRES-CIRSOC (2000), Reglamento Argentino para construcciones sismorresistentes. INPRES - CIR-SOC 103, Parte IV: Construcciones de acero.
- Jirsa, J. (Editor), (1996), "Theme Issue: Repair and Rehabilitation Research for Seismic Resistance of Structures", *Earthquake Spectra*, Vol. 12, No. 4, pp. 645-942.
- Kasai, K. y Popov, E. P. (1986a), "General Behavior of WF Steel Shear Link Beams", *Journal of Structural Engineering, ASCE*, Vol. 112, pp. 362-382.
- Kasai, K. y Popov, E. P. (1986b), "Cyclic Web Buckling Control for Shear Link Beams", *Journal of Structural Engineering*, ASCE, Vol. 112 pp. 505-523.
- Kelly, J. M. y Konstantinidis, D. A. (2011) Mechanics of Rubber Bearings for Seismic and Vibration Isolation. John Wilwy & Sons.
- Kovach, R. L. (1995), Earth's Fury. An Introduction to Natural Hazards and Disasters, Prentice Hall, Inc.
- Krawinkler, H., Bertero, V.V., y Popov, E.P., (1975) "Shear Behavior of Steel Frame Joints," *Journal of Structural Division, ASCE*, Vol. 101, ST11, pp. 2317-2338.
- Leyendecker, E. V., Hunt, R. J., Frankel, A. D. y Rukstales, K. S. (2000), "Development of Maximun Considered Earthquake Ground Motion Maps", *Earthquake Spectra*, Vol. 16, No. 1, pp. 21-40.
- Liang, Z., Lee, G. C., Dargush, G. F. y Song, J. (2012) Structural Damping. Applications in Seismic Response Modification. CRC Press
- Liu, Z. y Goel, S. C. (1988), "Cyclic Load Behavior of Concrete-Filled Tubular Braces", *Journal of Structural. Engineering, ASCE*, Vol. 114, pp. 1488-1506.
- Lehman, D. E., Roeder, C. W., Herman, D., Johnson, S. y Kotulka, B. (2008) "Improved Seismic Performance of Gusset Plate Connections", *Journal of Structural Engineering*, ASCE, Vol. 134, No6, pp 890-901.
- Lehmkuhl, E. (2002) "Renaissance A composite coupled shear wall system" *Proceedings of the 2002 SEAOC Convention*.
- Luco, N., Ellingwood, B. R., Hamburger, R. O. y Hooper, J. D. (2007), "Risk-Targeted versus Current Seismic Design Maps for the Conterminous United States", SEAOC 2007 Convention Proceedings.
- Martínez-Rueda, J. E. (2002) "On the Evolution of Energy Dissipation Devices for Seismic Design", *Earthquake Spectra*, Vol. 18, pp. 309-346.
- McCormac, J. C. (2002), *Diseño de Estructuras de Acero: Método LRFD*, Alfaomega Grupo Editor.
- McCormac, J. C. y Csernak, S. F. (2012), *Structural Steel Design*, Prentice Hall.
- McGuire, R. K. (2004), *Seismic Hazard and Risk Analysis*, Earthquake Engineering Research Institute, MNO-10.
- Midorikawa, M., Nishiyama, I, Tada, M. y Terada, T. (2012) "Earthquake and Tsunami Damage on Steel

Buildings Caused by the 2011 Tohoku Japan Earthquake", Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, Tokyo, Japan

- Miller, D. K. (2006), *Steel Desgin Guide 21: Welded Connections-A Prime for Engineers*. American Institute of Steel Construction Inc., Chigaco, IL.
- Miranda, E. y Bertero, V. V. (1994), " Evaluation of strength reduction factors for earthquake-resistant design", *Earthquake Spectra*, Vol. 10, No. 2, pp. 357-379.
- Moehle, J.P. (2000), "State of Research on Seismic Retrofit of Concrete Building Structures in the US," US-Japan Symposium and Workshop on Seismic Retrofit of Concrete Structures.
- Murray, T. M. y Summer, E. A. (2003) Steel Design Guide 4: Extended End-Plate Moment Connections. Seismic and Wind Applications, 2da Edición, American Institute of Steel Construction Inc., Chigaco, IL.
- Naeim, F. y Kelly, J. M. (1999) *Design of Seismic Isolated Structures*. John Wiley & Sons.
- Naeim, F. (2001), Seismic Design Handbook, Chapter 9. Seismic Design of Steel Structures Kluwer Academics Publisher, USA.
- Nethercot, D. A. (2003) *Composite Construction*. Spon Press.
- NZSEE (2006), Assessment and Improvement of the Structural Performance of Buildings in Earthquakes. Prioritisation Initial Evaluation Detailed Assessment Improvement Measures, Recommendations of a NZSEE Study Group on Earthquake Risk Buildings, New Zealand Society for Earthquake Engineering Inc.
- Okazaki, T. Arce, Engelhardt, M. D, Nakashima, M. y Suita, K. (2004a), "Experimental Study on Link-to-Column Connections in Steel Eccentrically Braced Frames", 13th World Conference on Earthquake Engineering, Vancouver, Canada, Paper No. 275.
- Okazaki, T. Arce, G. Ryu, H. C. y Engelhardt, M. D. (2004b), "Recent Research on Link Performance in Steel Eccentrically Braced Frames", 13th World Conference on Earthquake Engineering, Vancouver, Canada, Paper No. 302.
- Palazzo, G., López-Almansa, F., Cahís, X. y Crisafulli, F. (2009) "A low-tech dissipative buckling restrained brace. Design, analysis,production and testing". *Engineering Structures*. Vol. 31, No. 9, pp 2152-2161.
- Palazzo, G. y Crisafulli, F. (2007) "Consideraciones numérico – experimentales para el diseño de barras de pandeo restringido", *Quinta Reunión Latinoamericana de Usuarios de ABAQUS*, Córdoba, Argentina.
- Paulay, T. y Priestley, M. N. J. (1992), Seismic Design of Reinforced Concrete and Masonry Buildings, John Wilwy and Sons, Inc.

- Popov, E. P., Kasai, K. y Engelhardt, M. D. (1987), "Advances in Design of Eccentrically Braced Frames", Bulletin of the New Zealand National Society for Earthquake Engineering, Vol. 20, No.1, pp. 22-29.
- Popov, E.P., Engelhardt, M.D. y Ricles, J.M. (1989). "Eccentrically Braced Frames: U.S. Practice," *AISC Engineering Journal*, Second Quarter, pp. 66-80.
- Popov, E. P., Yang, T. S. y Grigorian, C. E. (1993)"New Directions in Structural Seismic Designs", Earthquake Spectra, Vol. 9, pp. 845-875.
- Powell, G. H (2010) Modeling for Structural Analysis. Behavior and Basics. Computers and Structures, Inc, Berkeley, USA.
- Priestley, M. J. N., Calvi, G. M. y Kowalsky, M. J. (2007), *Displacement-Based Design of Structures*, IUSS Press, Pavia, Italia.
- Ricles, J. M., Peng, S. W. y Lu, L. W. (2004) "Seismic Behavior of Composite Concrete Filled Steel Tube Column-Wide Flange Beam Moment Connections" *Journal of Structural Engineering, ASCE*, Vol. 130, No. 2, pp 223-232.
- Reiter, L. (1990), *Earthquake Hazard Analysis: Issues* and Insights, Columbia University Press, New York.
- Remennikov, A. M. y Walpole, W. R. (1997), "Analytical Prediction of Seismic Behaviour for Concentrically-Braced Steel Systems", *Earthquake Engineering and Structural Dynamics*, Vol. 26, pp. 859-874.
- Remennikov, A. M. y Walpole, W. R. (1997), "Seismic Behavior and Deterministic Design Procedures for Steel V-Braced Frames", *Earthquake Spectra*, Vol. 14, pp. 335-355.
- Sabelli, R., Mahin, S. y Chang, C. (2002), Seismic demands on steel braced frame buildings with buckling-restrained braces. Earthquake Engineering Research Center, University of California; http://nisee.berkeley.edu/library.
- Sabelli, R. y Bruneau, M. (2006), Steel Design Guide 20, Steel Plate Shear Walls, American Institute of Steel Construction Inc., Chigaco, IL.
- Salmon, C. G., Johnson, J. E. y Malhas, F. A (2008), *Steel Structures: Design and Behavior*, Prentice Hall.
- Skinner, K., Robinson, W. y MacVerry, G. (1993), An Introduction to Seismic Isolation. J. Wiley & Sons.
- Soong, T. y Dargush, G. (1997), Passive Energy Dissipation Systems in Structural Engineering. John Wiley & Sons.
- Soong, T. T. y Spencer, B. F. (2000) "Active, Semi-Active and Hybrid Control of Structures", *Proceedings of the 12th International Conference on Earthquake Engineering*, New Zealand, Paper 2834.
- Spacone, E. y El-Tawil, S (2004) "Nonlinear Analysis of Steel-Concrete Composite Structures: State of the Art" *Journal of Structural Engineering*, ASCE, Vol. 130, No 2, pp.159-168.
- Stoakes, C. D. y Fahnestock, L. A. (2010) "Flexural

Behavior of Concentrically-Braced Frame Beam-Column Connections", 2010 Structures Congress, ASCE.

- Tanabashi, R., Naneta, K. y Ishida, T. (1974), "On the Rigidity and Ductility of Steel Bracing Assemblage," *Proceedings of the 5th World Conference* on Earthquake Engineering, Vol. 1, pp. 834-840, IAEE, Rome, Italy.
- Tang, X. y Goel, S. C. (1989), "Brace Fractures and Analysis of Phase I Structure", *Journal of Structural Engineering, ASCE*, Vol. 115, pp.1960-1976.
- Taranath, B. S. (2012) Structural Analysis and Design of Tall Buildings: Steel and Composite Construction. CRC Press.
- Thornton, W. A. y Muir, L. S. (2008) "Vertical Bracing Connections in the Seismic Regime", *Sixth International Workshop pm Connections in Steel Structures*, AISC.
- Tremblay, R., Bruneau, M., Nakashima, M., Prion, H. G. L., Filiatrault, A. y De Vall, R. (1996), "Seismic Design of Steel Buildings: Lessons from the 1995 Hyogo-ken Nanbu Earthquake", *Canadian Journal* of Civil Engineering, Vol. 23, pag. 727-759, Canadá.
- Tremblay, R., Bolduc, P., Neville, R. y De Vall, R. (2006), "Seismic testing and performance of buckling-restrained bracing systems", Canadian Journal of Civil Engineering, Vol. 33, pp. 183-198.
- Tremblay. R., Haddad, M., Martinez, G., Richard, J. y Moffatt, K. (2008), "Inelastic Cyclic Testing of Large Size Steel Bracing Members", 14th World Conference on Earthquake Engineering, Beijing, China.
- Tsai, K. C., Chen, H. W., Hong, C. P. y Su, Y. F. (1993), "Design of Steel Triangular Plate Energy Absorbers for Seismic-Resistant Construction", *Earthquake Spectra*, Vol. 9, No. 3, pp. 505-528.
- Uang, C. M. y Bertero, V. V. (1988) "Use of Energy as a Design Criterion in Eartquake-Resistant Design", *Report UBC 88-18*, University of California at Berkeley.
- Veletsos, A. S. y Newmark, N. M. (1960), "Effects of Inelastic Behavior on the Response of Simple Systems to Earthquake Ground Motion", *Proceedings* of the 2nd World Conference on Earthquake Engineering, Japón, Vol. II, pp 895-912.
- Veletsos, A. S., Newmark, N. M. y Chelepati, C. V. (1965), "Deformation Spectra for Elastic and Elastoplastic Systems Subjected to Ground Shock and
- Vian, D., Bruneau, M. y Purba, R. (2009a) "Special Perforated Steel Plate Shear Walls with Reduced Beam Section Anchor Beams. I: Experimental Investigation", *Journal of Structural. Engineering*, ASCE, Vol. 135, pp.211-220.

Earthquake Motions", *Proceedings of the 3rd World Conference on Earthquake Engineering*, Nueva Zelanda, Vol. 2, pp 663-680.

- Vielma, J. C., Barbat, A. H. y Oller, S. (2006), "Factores de Reducción de Respuesta. Estado del Arte y Estudio Comparativo de Códigos", *Revista Internacional de Ingeniería de Estructuras*, Vol. 11, No. 1, pp. 77-106.
- Vian, D. y Bruneau, M. (2004), "Testing of Special LYS Steel Plate Shear Walls". 13th World Conference on Earthquake Engineering, Vancouver, Canada, Paper No. 978.
- Vian, D., Bruneau, M. y Purba, R. (2009b) "Special Perforated Steel Plate Shear Walls with Reduced Beam Section Anchor Beams. II: Analysis and Design Recommendations", *Journal of Structural. Engineering*, ASCE, Vol. 135, pp.221-228.
- Vian, D., Bruneau, M. y Purba, R. (2009b) "Special Perforated Steel Plate Shear Walls with Reduced Beam Section Anchor Beams. II: Analysis and Design Recommendations", *Journal of Structural Engineering*, ASCE, Vol. 135, pp.221-228.
- Viest, I. M, Colaco, J. P., Furlong, R. W., Griffis L. G., Leon, R. T. y Wyllie, L. A. (1997), *Composite Construction Design for Buildings*, McGraw-Hill Professional.
- Vinnakota, S. (2006), *Estructuras de acero: compor*tamiento y LRFD, McGraw-Hill.
- Wada, A. y Nakashima, M. (2004), "From infancy to maturity of buckling restrained braces research". Proceedings of the 13th World Conference on Earthquake Engineering, Canadá. Paper No. 1732.
- Wakabayashi, M. (1986), *Design of Earthquake Resistant Buildings*, McGraw Hill, New York.
- Watanabe, A., Hitomi, Y., Saeki, E., Wada, A. y Fujimoto, M. (1988), "Properties of brace encased in buckling-restraining concrete and steel tube", *Proceedings of Ninth World Conference on Earthquake Engineering*, Japón, Vol. IV, pp. 719-724.
- Wilson, E. L. (2010), Static & Dynamic Analysis of Structures, 4ta Edición. Computers and Structures, Inc, Berkeley, USA.
- Yura, J. A. (2001) "Fundamentals of Beam Bracing", *Engineering Journal*, AISC, Vol. 38, No 1, 1st Quarter, pp. 11–26.
- Ziemian, R. D. (2010), *Stability Design Criteria for Metal Structures*, John Wiley & Sons, 6ta Ed.

Asociación Latinoamericana del Acero Benjamín 2944 - 5to piso - Las Condes - Santiago de Chile Teléfono (56-2) 233-0545 Fax (56-2) 233-0768 alacero@alacero.org www.alacero.org