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Abstract

This paper describes the dynamics of an unmanned aerial vehicle (UAV) for monitoring of structures and maintenance of bridges. It presents a
novel control law based on computer vision for quasi-stationary flights above a planar target. The first part of the UAV's mission is the navigation
from an initial position to a final position in an unknown 3D environment. The new control law uses the homography matrix computed from the
information obtained from the vision system. The control scheme will be derived with backstepping techniques. In order to keep the camera's field
of view, the control law uses saturation functions for bounding the UAV orientation and limiting it to very small values.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Rapid advances in control theories, computing abilities,
communications, and sensing technology offer a great tool for
the unmanned aerial vehicles technology. In the last two decades
a great interest in the UAV technology has risen in military
applications, and many projects have been studied and applied.

In LCPC-Paris (Laboratoire Central des Ponts et Chaussées),
we have started a project pertaining to civil applications of a
UAV: bridge inspection and traffic surveillance. This project for
bridges’ inspection is called PMI (Plate-forme Mobile d'Instru-
mentation) which is a UAV capable of quasi-stationary flights
whose mission is the inspection of bridges and location of
defects and cracks.

Ageing infrastructure has become a major concern in western
European countries. In France, roughly half of the bridge life
cost is due to repairing and maintenance. Since many bridges
were built in the sixties, health diagnostics and assessment of
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residual life already proves very important and will become
increasingly crucial in the following decades. To this end,
systematic bridge inspection has been organized for a long time
and well-defined visual observation and reporting task are
periodically carried out on bridges [1,2], this inspection must be
done at least once every 6 years to control the evolution of
defects and cracks. Current visual inspection involves a rather
heavy logistics. A large platform mounted on a heavy truck is
Fig. 1. Footbridge for crack's inspection.
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operated by a team of highly specialized inspectors, who work in
extremely difficult and risky conditions, looking for small
defects or damages in sometimes hardly accessible components
of the structure (i.e. cables). Of course, the bridge under
inspection is closed to traffic. This gives rise to a classical
footbridge. Fig. 1 shows an example of a classical footbridge.

Progresses in visual bridge inspection look possible in the
direction of remote sensing and process automating. The use of
unmanned aerial vehicles could be of a particular interest as
camera carriers and image transmitters. The UAV could follow a
predetermined path or could move by visual servoing and
detects by the means of image treatment the size and location of
defects and cracks. The use of a drone for inspection will give us
multiple advantages over traditional inspection method:

• Reducing work accident risk.
• Budget reduction: less logistics and less working hours.
• The bridge will ultimately not be closed for traffic.
• The possibility of using nondestructive techniques (infrared,
shearography, …) for crack's detection.

For the sake of this application, a novel control law based on
visual servoing is derived to control the UAV. Almost all control
theories for UAV's are built around a vision system, using
visual servoing as a control method. A typical vision system
will include an off-the-shelf camera, Inertial Navigation System
(INS) and in some cases a Global Positioning System (GPS).

In this paper, we consider a general mechanical model of a
flying robot capable of quasi-stationary maneuvers. Then we
derive a control law from classical backstepping techniques [3]
of autonomous hovering system based on operating the
translational from the rotational rigid body (airframe) dynamics.
A novel approach is also presented; it will limit the orientation of
the UAV. Limiting the orientation will ensure that the object will
remain in the camera's field of view. We will prove the stability
of such a strategy based on saturation functions. Lastly, we
present some simulation results of the new control law and the
feasibility trial executed on the viaduct of Saint Cloud in Paris.

2. Related work

The principal question that naturally arises while using
vision in control application is:

How should the information from vision sensors be used for
robotic control purposes?

There exist three different methods of visual servoing: 3D,
2D and 2½D. 3D visual servoing techniques that involve
reconstruction of the target pose with respect to the camera are
called: position based visual servoing (3D visual servoing).
This kind of techniques leads to a Cartesian motion planning
problem. Its main drawback is the need of a perfect knowledge
of the target geometric model. The second class known as
image based visual servoing (2D visual servoing) aims to
control the dynamics of features in the image plane directly [4].
Classical 2D methods suffer from the high coupling dynamics
between translation and rotational motion which makes the
Cartesian trajectory uncontrollable. In this paper we use a third
method presented in [5] (2½D visual servoing) that consists of
combining visual features obtained directly from the image, and
features expressed in the Euclidean space. More precisely, a
homography matrix is estimated from the planar feature points
extracted from the two images (corresponding to the current and
desired poses). From the homography matrix, we will estimate
the relative position of the two views.

3. A general UAV dynamic model

To derive a general dynamic model for a UAV is not an easy
task because each model has its own capabilities and aerody-
namical properties. In this section, we will derive mechanical
equations for UAV's in hover or quasi-stationary conditions.

Let F⁎ = {Ex, Ey, Ez} denote a right-hand inertial or world
frame, such that Ez denotes the vertical direction downwards
into the earth. Let ξ = (x, y, z) denote the position of the center of
mass of the object in the frame F⁎ relative to a fixed origin in F⁎.
Let F = {e1, e2, e3} be a (right-hand) body-fixed frame for
the airframe. The orientation of the airframe is given by a
rotation R:F → F⁎, where R ∈ SO [3] is an orthogonal rotation
matrix.

Let V ∈ F denote the linear velocity and Ω ∈ F denote
the angular velocity of the airframe both expressed in the
body-fixed frame. Let m denote the mass of the rigid object
and let I ∈ ℜ 3×3 be the constant inertia matrix around the
center of mass (expressed in the body-fixed frame F ). New-
ton's equations of motion yield the following dynamic model
for the motion of a rigid object:

:
n ¼ RV ð1Þ

m
:
V ¼ −mX� V þ F ð2Þ
:
R ¼ R sk Xð Þ; ð3Þ

I
:
X ¼ −X� IXþ G: ð4Þ
where F is the vector forces and Γ is the vector torques. The
notation sk (Ω) denotes the skew-symmetric matrix such that
sk (Ω)υ = Ω × υ for the vector cross-product × and any vector
υ ∈ ℜ3. The vector force F is defined as follows:

F ¼ mgRTe3−ue3

In the above notation, g is the acceleration due to gravity, the
u is the motor input force.

4. Camera modeling and visual servoing method

In this connection we will present a brief discussion of the
camera projection model and then introduce the homography
matrix to use the 2½D visual servoing method.

For the control law we will derive the error dynamics
equations from Eqs.(1)–(4), they will be based on a defined
visual error. Using the Lyapunov control design, we will find
the desired force u and the desired orientation Rd to converge
the UAV to a position described by a desired image.



Fig. 2. Camera projection diagram showing the desired (F⁎) and the current (F)
frames.
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4.1. Projection model and planar homography

Visual data is obtained via a projection of real world images
onto the camera image surface. This projection is parameterized
by two sets of parameters: intrinsic (i.e. those internal
parameters of the camera such as the focal length, the pixel
aspect ratio, etc.). The pose of the camera determines a rigid
body transformation from the world or inertial frame F⁎ to the
camera fixed frame F (and vice-versa). One has

P⁎ ¼ RP þ n ð5Þ
as a relation between the coordinates of the same point in the
body-fixed frame (P ∈ F) and in the world frame (P⁎ ∈ F⁎).

Let p is the image of the point P⁎ and p⁎ is the image of the
same point viewed when the camera is aligned with frame F⁎

(see Fig. 2). When all target points lie in a single planar surface
one has1

pii RT þ tn⁎T

d⁎

� �
p⁎i ; i ¼ 1;…;k

where t is the translation vector between the two frames F and
F⁎. d⁎ is the estimated distance between the desired image and
the target. n⁎ being the normal vector to the desired image. The
projective mapping H: = RT þ tn⁎T

d⁎

� �
is called a homography

matrix; it relates the images of points on a target plane when
viewed from two different poses (defined by the coordinate
systems F and F⁎). More details on the homography matrix
could be found in [6]. The homography matrix contains the pose
information (R,t) of the camera. However, since a projective
relationship exists between the image points and the homo-
graphy, it is only possible to determine H (using only image
points equations) up to a scale factor. There are numerous
approaches for determining H, up to this scale factor, for
example [7].
1 Most statements in projective geometry involve equality up to a
multiplicative constant denoted by ≅.
Extracting R and t / d⁎ can be quite complex [5,8,9,10].
However, one quantity r ¼ d

d⁎ can be calculated easily and
directly:

r ¼ 1þ nT t

d⁎
¼ det Hð Þ ¼ det RT þ tn⁎T

d⁎

� �
:

There are special cases where it is relatively straight forward
to compute important parameters from an unscaled estimate
of the homography H. An important case is where the tar-
get plane is perpendicular to the line of sight of the world frame
(n⁎ + (0,0,1)T)). In this case, the first two columns ofH are scaled
versions of the first two columns of R. This special case is
particularly useful while stabilizing the UAV in front of a planar
area on the bridge to inspect closely some defects, the camera will
be mounted so as its line of sight is perpendicular to the planar
target. This case will be used in our simulation (Section 7).

4.2. Visual servoing control strategy

By exploiting Eqs.(1)–(4) and defining a visual error ϵ1, in
this section we derive the error dynamics equations and by
using the Lyapunov functions, we find the desired control input
(force and orientation) u and Rd.

To simplify the derivation, it is assumed that the camera
fixed frame coincides with the body-fixed frame F.

Let P′ denote the observed point of reference of the planar
target, and P⁎ be the representation of P′ in the camera fixed
frame at the desired position (Fig. 2). The dynamics associated
with the stabilization of the camera around the desired position
P⁎ fully determine two degrees of freedom (pitch and roll) in the
attitude of the airframe. The yaw angle trajectory is specified
directly in terms of the desired yaw angle /d. In this paper, to
determine the rotation matrix we use the classical ‘yaw’, ‘pitch’
and ‘roll’ Euler angles (/, θ, ѱ) commonly used in aerodynamic
applications [11]. The expression of the rotation matrix is given
by:2

R ¼
chc/ swshc/−cws/ cѱshc/ þ sws/
chs/ swshs/ þ cws/ cwshs/−swc/
−sh swch cwch

0
@

1
A: ð6Þ

The visual servoing problem considered is:
Find a smooth force feedback u depending only on the

measurable states: the observed point p, the homography
matrix H, the translational and angular velocities (V, Ω), and
the estimated parameters (R, r) from the homography matrix
(H) which provide a partial pose estimation, such that the
following errors

ϵ ¼ R P−RTP⁎
� �

; r ¼ /−/d

are asymptotically stable.
2 The following shorthand notation for trigonometric function is used:

b7 ¼ cos ðbÞ; sb7 ¼ sin ðbÞ; tb7 ¼ tan ðbÞ:
c



3 It is a significant condition because the distance P⁎ must be greater than 1
which is the focal length of the camera.
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Note: ϵ and σ are not defined in terms of visual information.
Following [5], the camera can be controlled in the image

space and in the Cartesian space at the same time. They propose
the use of three independent visual features, such as the image
coordinates of the target point associated with the ratio r
delivered by the determinant of the homography matrix.
Consequently, let us consider the reference point P′ lying in
the reference plan π and define the scaled Cartesian coordinates
using visual information as follow:

Pr ¼ n⁎Tp⁎

nTp
rp:

Knowing that

jjPjj
jjP⁎jj ¼

n⁎Tp⁎

nTp
r;

it follows that we can reformulate the error ϵ in terms of
available information, so let us define

ϵ ¼ R
n⁎Tp⁎

nTp
rp−RTp⁎

� �
: ð7Þ

From the above discussion and equations describing the
system dynamics, the full dynamics of the error ϵ may be
written as

:
ϵ ¼ 1

jjP⁎jj t ð8Þ

m t
: ¼ −uRe3 þ mge3 ð9Þ

:
R ¼ Rsk Xð Þ ð10Þ

I
:
X ¼ −X� IXþ G: ð11Þ
Define

d7 ¼ ϵþ t: ð12Þ
Let S1 be the first storage function for the backsteeping

procedure. It is chosen for the full linear dynamics Eqs.(8) and (9)

S1 ¼ 1
2
jjdjj2 þ 1

2
jjtjj2: ð13Þ

Taking the time derivative of S1 and substituting for Eqs.(8)
and (9) yield

d
dt
S1 ¼ qdTtþ dþ tð ÞT mge3−uRe3ð Þ ð14Þ

where q ¼ 1
jjP⁎jj : This inverse distance ρ cannot be found or

identified, so we will test its identifiability as an unknown
parameter in Appendix A.

Applying classical backstepping one would assign a virtual
vectorial control for 1

m uRe3ð Þd

u Re3ð Þd¼ mge3 þ mtþ md: ð15Þ
This choice is sufficient to stabilize S1 if the term (uRe3)
d is

available as a control input. If (uRe3)= (uRe3)
d then

:
S1 ¼ −jjdjj2− 2−qð ÞdTt−jjtjj2

is a negative definite ∀ρb1.3

Note that the vectorial input can be split into its magnitude u,
that is linked directly to the motor torques, and its virtual (or
desired) direction (Rde3), that defines two degrees of freedom in
the airframe attitude dynamics (Eqs.(10) and (11)):

juj ¼ mge3 þ mtþ mdjj
and the desired direction

Rde3 ¼ mge3 þ mtþ d
juj : ð16Þ

Now, to determine the fully desired rotation matrix Rd

we had to find the constraint of the yaw parameter using
another vector. Let e1 be the desired orientation. We define the
vector σ which belongs to the plane built by the two vectors e1
and Rde3 (σ∈ span{Rde3, e1}) and we impose that σ=Rde1 (by
this way, σ will be perpendicular to Rde3). We obtain

r ¼ e1 þ aRde3
jje1 þ aRde3jj ; with rT Rde3 ¼ 0: ð17Þ

Here α is a real number obtained by solving the two above
equations. The final equation for the desired matrix Rd can be
defined as:

Rd ¼ r r1 Rde3ð Þ Rde3½ �: ð18Þ

The desired rotation matrix Rd in Eq.(18) is not subject to
any restrictions. In the next section, the orientation will be
limited to small values of the Euler angles.

5. Limiting the UAV orientation

In the theoretical developments based on the backstepping
[3], the proposed control law assures an exponential conver-
gence towards the desired position. However, this type of
convergence is not recommended when the vehicle is initially
far from the desired position. Indeed, the dynamic model based
on quasi-stationary conditions (hovering conditions) is not valid
anymore, because the dynamics of such a convergence will
provoke a different flight mode. Moreover, the target image may
leave the field of view of the camera during the evolution of the
vehicle. To avoid such situations, it is necessary to insure that
the focal axis of the camera is close to the gravity direction. In
the sequel, we proposed to use small gains technique (for
example the technique of saturation functions presented by Teel
in [12]). This technique seems well adapted to our problem.
Indeed, if the orientation is saturated, we can insure that the
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robot will remain in quasi-stationary maneuvers during all the
operation.

The orientation Rde3 is a function of the terms υ and δ.
Therefore, Eq.(15) becomes

uRde3 ¼ mge3 þ mSat2 tþ Sat1 dð Þð Þ ð19Þ
where Sati (x) is a continuous, nondecreasing saturation
function satisfying:

• xT Sati (x)N0 for all x≠0.
• Sati (x)=x when the components of the vector x are smaller
than Li (|x(d )|≤Li).

• |Sati (x)|≤Mi for all x∈ℝ.

Proposition 5.1. The following choice of the saturation
functions [12]

Mib
1
2
Liþ1;

1−q
2

Liþ1V LiVMi

ensures global stabilization of the linear dynamics when Eq. (19)
is used as control input of the translational dynamics.

Proof. Recalling Eqs.(9) and (19), it yields

t
: ¼ −Sat2 tþ Sat1 dð Þð Þ:
Consider the storage function Sυ=1/2||υ||

2. The derivative of Sυ
is given by
:
St ¼ −tTSat2 tþ Sat1 dð Þð Þ:
Using conditions on Sati coupled with the fact that M1≤L2, it
follows that S

.
υb0 (∀|υ(d )|≥1 / 2 L2) (υ(d ) represents a

component of the vector υ). Consequently, it exists a finite
time T1 after which all components of the linear velocity vector
υ(d )≤1 /2 L2 (∀t≥T1). The control law Eq.(19) becomes then

u4Rde3 ¼ mge3 þ m tþ Sat1 dð Þð Þ; 8tzT1:

Now consider the evolution of the term δ for t≥T1. Let Sδ the
storage function associated with the term δ (Sδ=1/2||δ||

2).
Deriving Sδ it yields

:
Sd ¼ dT q−1ð Þt−Sat1 dð Þð Þ:
Using the second condition of the proposition, one can observe
that the components of the vector δ become smaller than M1

after a finite time T2 where the control law becomes

uRde3 ¼ mge3 þ m tþ dð Þ; 8tzT2

insuring exponential stability after time T2. □
Using the saturated control law (Eq.(19)), the derivative of the

first storage function becomes

:
S1 ¼ −jjdjj2− 2−qð ÞdTt−jjtjj2− dþ tð ÞT jujs R̃−I

� �
Rde3

where

R̃ ¼ RRT
d ; and jujs ¼ jjmge3 þ mSat2 tþ Sat1 dð Þð Þjj:
According to the above proposition, the system with such a
saturated input is globally asymptotically stable if the new error
term R̃− I converges to zero. Now, it only remains to control the
attitude dynamics involving the error R̃− I.

6. Attitude dynamics control

The next step of the control design involves the control of the
attitude dynamics such that the error R̃− I converges exponen-
tially to zero. We will use a quaternion representation of the
rotation to obtain a smooth control for R̃. The attitude deviation
R̃is parameterized by a rotation γ̃around the unit vector k̃. Using
Rodrigues’ formula [11] one has

R̃ ¼ I þ sin γ̃ð Þsk k̃
� �

þ ð1−cos γ̃
� �

Þsk k̃
� �2

:

The quaternion representation describing the deviation R̃ is
given by [13]

g̃7 ¼ sin
γ̃
2
k̃; g̃d ¼ cos

γ̃
2
; with jjg̃jj2 þ g̃20 ¼ 1:

The deviation matrix R̃ is then defined as follows

R̃ ¼ g̃20−jjg̃jj2
� �

I þ 2g̃g̃T þ 2g̃0sk g̃ð Þ: ð20Þ

The attitude control objective is achieved when R̃= I. From
Eq.(20) this is equivalent to η=0 and η̃0=1. Indeed, it may be
verified that

jjR̃−I jjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr R−Ið ÞT R̃−I

� �� �r
¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
2jjg̃jj:

p
ð21Þ

Based on this result, the attitude control objective is to drive
η̃ to zero. Differentiating (η̃,η̃0) yields

˜
:
g ¼ 1

2
g̃0I þ sk g̃ð Þð ÞX̃; ˜

:
g0 ¼ −

1
2
g̃TX̃: ð22Þ

where Ω̃ denotes the error angular velocity

X̃ ¼ Rd X−Xdð Þ ð23Þ

and Ωd represents the desired angular velocity. In order to find
the desired angular velocity, we have to consider the time
derivative of the desired orientation Rde3

:
Rd ¼ Rdsk Xdð Þ; :

Rde3 ¼ Rde3sk Xdð Þ: ð24Þ

Since differentiating the direction Rde3 involves the use of
the unknown parameter ρ which is nonidentifiable (Appendix



Fig. 3. Evolution of the “X4-flyer” states (the 3 Euler Angles [radian] and the 3 coordinates [meter]) in the 2 control laws; without limiting its orientation (dashed
lines—angles in 10−1 rad), and the new control law (full lines—angles in 10−3 rad).

Fig. 4. Photo taken front the feasibility test done on the viaduct of Saint Cloud.
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A), we will design a control law with a high gain virtual control
Ω̃υ. In this way we can neglect the effect of the time derivative
of Rde3.

Then, by choosing the virtual control as

X̃
t
cXt ¼ −2k g̃0g̃

with the parameter k chosen high enough to neglect Ωd. Let

m ¼ 1
k
Xþ RT

dg̃0g̃: ð25Þ

After tedious calculations, we obtain the time derivative of ν

:
m ¼ −

k

2
g̃0R

T
d g̃−

k

2
jjg̃0jj2m: ð26Þ

Let us define the Lyapunov function candidate for the
attitude deviation:

S2 ¼ 1
2
jjg̃jj2 þ 1

2
jjmjj2: ð27Þ

Taking the time derivative of S2 and using Eq.(26), we obtain

:
S2 ¼ −

k
2
jjg̃0jj2jjg̃jj2−

k
2
jjg̃0jj2jjm̃jj2: ð28Þ

This completes the control design for the attitude
dynamics, since the time derivative of the storage function
in Eq.(28) is a negative definite. Then the input of the new
control law (Eq.(19)) limiting the orientation ensures the
exponential stability of the system.
7. Simulation results

In order to evaluate the efficiency of the proposed servoing
technique with orientation limits, simulation results for a hovering
robot are presented. The experiment considers a basic stabilization
mission. The target is composed of five points: four on the vertices
of a planar square and one on its center. The available signals are
the pixel coordinates of the five points observed by the camera.

For this experiment, it is assumed that the desired plane is
perpendicular to the line of sight. The desired image feature is
chosen such that the camera set point is located some meters
above the square.

The parameters used for the dynamical model are m=0.6,
I=diag[0.4, 0.4, 0.6], g=10, d=0.25 and κ=0.01. Initially, the
robot is assumed to hover at (10,15, −12) with thrusts



Fig. 5. In (a) the image is coded in RGB. It is then compared to a threshold value for each color layer in (b). In (c) we insulate black pixels corresponding to cracks.
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corresponding the necessary forces to maintain stationary flight
u4≈mg.

We will compare the results of the new control law (with
orientation limits) versus the evolution of the states in the control
law (without orientation limits) developed in [6]. One can notice
(Fig. 3) that the time of convergence for the states following the new
law of control is longer than the previous law, but instead we see
that the variation of the Euler angles are restricted to small values (in
this case, in order of 10− 3 rad). So the new control lawwhich limits
the X4-flyer orientation ensures small values of the Euler angles,
therefore we insure that the dynamics of the flying vehicle are
applicable to the hover conditions (quasi-stationarymaneuvers) and
the object will remain in the field of view of the camera.

7.1. Feasibility experiment: viaduct of Saint Cloud

In order to validate the concept of inspecting bridge defects
by means of a visual device mounted on a UAV, an on-site
experiment has been carried out with the help of a helicopter
that has been flying few minutes around a viaduct in France,
then taking a video from which some pictures have been
extracted (Fig. 4). It was also a test for the required security
measures and applicable regulations. The choice of this
particular viaduct was made due to its morphology and
situation. This viaduct with particularly high traffic is located
indeed in an urbanized zone subjected to the control of two
airports. It is constructed above the “Seine” and connecting two
cities: Boulogne-Billancourt and Saint Cloud, which will make
the prerequisite authorizations a more complex task.

During the test, a video sequence was taken using the onboard
camera. The images were presented to bridge inspection experts
to analyze them. The exploitation of the images demonstrates the
possibility of getting useful information comparing to visual
inspection. Additional image treatment with good image
resolutionwill let us detect cracks of the order of 1/10mm (Fig. 5).

8. Conclusion

This paper reflects a control law of a UAV under some
practical restrictions. It presents a control strategy for the
autonomous flight with orientation limits in order to keep the
object in the camera's view field. This strategy only requires
that the system is able to measure, with a video camera, the
image plane mapping features on a planar surface. A control law
based on separating translation and orientation dynamics is
exploited. It also limits the UAV's orientation to small values of
angles while stabilizing it above a planar target.

Appendix A. Test for the identifiability of ρ

In this appendix, we will apply the conditions given by [14]
to test the identifiability of the parameter ρ. The test is known as
the generating series test; it is based on power series associated
with the system. Rewriting the system Eqs.(8)–(11) using the
notation x1=ϵ1, x2=υ, x3=R, and x4=Ω:

:
x ¼ f0 x;qð Þ þ f1 x;qð Þuþ f2 x;qð ÞG ð29Þ

where

f0 ¼
0 qx2 0 0
0 0 0 0
0 0 x3sk x4ð Þ 0
0 0 0 −I−1x4 � Ix4

2
664

3
775
f1 ¼
0

−
1
m
ux3e3
0
0

2
664

3
775 f2

0
0
0
I−1

2
664

3
775:

To simplify the test, we eliminate the term ge3 from the equation.
This elimination won't alter in any way the result of this test. Let
us consider the vector fields associated with the last system:

F0 x;qð Þ :½ � ¼ qx2
B

Bx1
þ x3 sk x4ð Þ½ � B

Bx3
− I−1x4 � Ix4
	 
 B

Bx4

F1 xð Þ :½ � ¼ 1
m
x3e3

B

Bx3

F2 xð Þ :½ � ¼ I−1
B

Bx4



10 N. Metni, T. Hamel / Automation in Construction 17 (2007) 3–10
Then we compute the Lie derivatives of any output function y and
evaluate it at x=x⁎ where x1=x2=x4=0, x3= I: F1(F0(x⁎, ρ)[y]),
F2(F0(x⁎,ρ)[y]), F2(F0(F0(x⁎,ρ)[y])). The parameter will be
identifiable if the system has a unique solution for ρ. In our
case, the Lie derivatives all vanish at x=x⁎ so the system is
structurally nonidentifiable.

Appendix B. Glossary of symbols

F⁎={Ex, Ey, Ez} Right handed inertial (world) frame.
F={e1, e2, e3} Right handed body-fixed frame.
ξ=(x, y, z) Position of the center of mass.
R:F→F⁎ Orthogonal rotation matrix.
Rd Desires orientation matrix.
R̃ Deviation (error) between R and Rd.
V Linear velocity of the mobile expressed in F⁎.
υ Linear velocity of the mobile expressed in F.
Ω Angular velocity of the mobile expressed in F.
I Constant Inertia matrix around the center of mass.
F Vector of external forces applied to the mobile.
Γ Vector of external torques applied to the mobile.
u Motor input force due to rotors.
P⁎ Point expressed in F⁎.
P P⁎ expressed in F.
t Translation vector between the two frames F and F⁎.
d⁎ Distance between the desired image and the target.
ρ Inverse of the distance d⁎.
n⁎ Normal vector to the desired image.
H Homography matrix.
(/, θ, w) Euler angles used in aerodynamic application.
δ Error defined in terms of visual information.
Mi, Li Properties of the saturation functions.
(η̃,η̃0) Quaternions describing the deviation R̃.
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